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Abstract 

Although computational techniques for solving Multiobjective Optimization Prob- 

lems (MOPs) have been available for many years, the recent application of Evolutionary 

Algorithms (EAs) to such problems provides a vehicle with which to solve very large scale 

MOPs. This research classifies and analyzes contemporary Multiobjective Evolutionary 

Algorithm (MOEA) research and associated MOPs. Under the umbrella of a priori, pro- 

gressive, and a posteriori algorithms, all currently known MOEAs proposed in the litera- 

ture are classified and cataloged. The classification also incorporates detailed algorithmic 

characteristics, such as objective aggregation, interactive methods, sampling, ranking, and 

niching. Using a consistent MOEA terminology and notation, each cited MOEAs' key 

factors are presented in tabular form for ease of MOEA identification and selection. This 

effort currently classifies 218 distinct MOEA research efforts and applications (representing 

272 separate references). 

A detailed quantitative and qualitative MOEA analysis is presented. The classified 

efforts provide a basis for analyses about various algorithmic techniques, fitness functions, 

gene representations, and the problem domains within which MOEAs are applied. On a 

qualitative level MOEA "state of the art" is discussed, addressing topics such as MOEA 

characteristics, theory, additional populations, complexity, and well-engineered MOEA 

implementations. New theorems and definitions are also presented. 

This research extends the traditional notion of building blocks to the MOP domain 

in an effort to develop more effective and efficient MOEAs. An innovative extension of 

an existing building block-based EA to the MOP domain (named the MOMGA), and the 

engineering design decisions made during its construction are presented. 

The MOEA community's limited de facto test suites contain various MOP functions, 

many of whose origins and rationale for use are unknown. Thus, example MOPs from the 

current MOEA literature are presented in tabular form and classified based upon problem 

domain genotype and phenotype characteristics; these include connectivity, disjointness, 

concave or convex shape, constraints, and symmetry. Using general test suite guidelines, 

xix 



more comprehensive MOEA test function suites are generated based upon MOP charac- 

teristics and applicable MOEA theory. 

Few efforts quantitatively measure MOEA performance; fewer still compare MOEA 

results to MOPs with known optima. Using a developed MOEA test function suite, an 

experimental methodology incorporating known MOP solutions and appropriate test suite 

metrics is offered as a proposed evaluation framework allowing for absolute comparisons 

of specific MOEA approaches. This framework is then used in experiments with three 

well-known MOEAs and the MOMGA, examining their performance in regard to test 

MOPs. Experimental results, their statistical analyses, and other germane observations 

are presented. The MOMGA is shown to be at least as effective as other MOEAs tested 

and often more so. 

Taken together, this document's classifications, analyses, and new innovations present 

a complete, contemporary view of current MOEA "state of the art" and possible future 

research. Researchers with basic EA knowledge may also use part of it as a largely self- 

contained introduction to MOEAs. 



Multiobjective Evolutionary Algorithms: 

Classifications, Analyses, and New Innovations 

/.   Introduction and Overview 

It always takes longer than you expect, even when you take into account Hofstadter's Law. 
Douglas Hofstadter, Gödel, Escher, Bach 

1.1    Introduction 

With or without conscious thought people make decisions throughout every day of 

their lives. These decisions may be as simple as deciding what clothes to wear or as difficult 

as those involved in engineering a space shuttle's design. The former decision is made in 

a matter of seconds while one of the latter may take years, with the attendant difficulties 

of changing priorities, rising costs, changing resource levels, and so on. Oftentimes these 

problems are viewed as minimizing cost while maximizing gain. This research focuses on 

complex types of these optimization problems. 

Consider the very simple example of purchasing a car. The purchaser wishes to satisfy 

the following criteria: minimizing the car's cost, insurance premium, and weight (for towing 

behind a motor home), and maximizing its "fun." The purchaser also desires said vehicle to 

meet the following conditions: seats six adults (comfortably), provides all-time four-wheel 

drive and a "premium" stereo system, blue or black two-tone paint, and a minimum 75 miles 

per gallon. In mathematical terminology the available vehicles (makes and models) are the 

problem's decision variables, the conditions to be met are the constraints, and the process 

of minimizing and maximizing the criteria is called optimization. An objective function 

based on the decision variables is used to determine an associated vector representing how 

"well" some particular vehicle satisfies the criteria of vehicle and insurance cost, weight, 
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and "fun."    Because multiple objectives are simultaneously considered this problem is 

termed a Multiobjective Optimization Problem (MOP). 

This simple example highlights many difficulties associated with solving MOPs. 

Lower vehicle costs may not result in the desired paint job and stereo system. The de- 

sired 'miles per gallon' may not be achieved by any vehicle on the market. Constructing a 

mathematical model representing this situation may not be easy. For example, how does 

one quantify "fun" and "premium?" Perhaps this MOP is not as simple as it appears? 

1.2    Research Definition 

Humanity has long been solving MOPs. As both human society and its technologies 

progressed and became more complex, one can easily argue that real-world MOPs also 

became correspondingly "harder." For instance, Darius assumed control of the Persian 

Empire around 500 B.C. Soon after he led his army and navy on a campaign to secure 

the Empire's eastern and western frontiers. [119:pg. 16]. His 70,000 man army consisted 

of foot soldiers, archers, and cavalrymen, and his navy had 200-300 ships. It is obvious his 

campaign's planning was rife with conflicting objectives. 

Imagine his war council's conversations. "Which frontier should be attacked first?" 

"Can the navy be used here instead of the army?" "Is the army or navy more effective 

in coastal attack?" "Since most of the foot soldiers are needed here, can this mission 

be accomplished by a force composed primarily of archers?" "The cavalry is the force of 

choice here, but isn't their cost more expensive (in terms of logistics)?" One easily sees 

the conflicts and tradeoffs which often occur when attempting to simultaneously satisfy 

multiple conflicting and/or complementary objectives. 

Fast forward 2500 years to 1991. Compare Darius' situation to that of General Nor- 

man Schwarzkopf's as Commander-in-Chief, Central Command, during Operation Desert 

Storm. As military leader of the coalition attacking Iraq (with almost 600,000 US person- 

nel alone [15:pg. 492]), Schwarzkopf had several military force options to consider. The 

US could supply troops from its own Army, Air Force, Navy, and Marines. Other coali- 

tion members brought similar military forces to the battle, some with unique capabilities. 
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A multitude of weaponry was available. Army troops were armed with pistols, machine 

guns, artillery, and tanks. Coalition navies used destroyers, submarines, and carrier-based 

aviation. The Air Force brought precision-guided munitions and conventionally-armed 

cruise missiles to the fray. One easily sees this campaign's planning was a much more 

difficult problem than Darius faced. Many more resources were available for use, each with 

attendant benefits and drawbacks depending on their particular application. A mix of 

social, political, and military objectives was still considered here, but instead of satisfying 

these goals in view of a single country's interests, a coalition of countries was involved. 

Additionally, many coalition nations' political and military leadership were no longer em- 

bodied in the same individual. Battle maps showing coalition forces' attacks on Iraq give 

some appreciation for how some of the many complex military objectives were (partially) 

satisfied [15:pp. 515-521]. 

Just as instantiated MOP complexity has increased through history, so has perfor- 

mance and complexity of associated solution methods. Consider the post-World War II 

period. Here, the combination of "state of the art" algorithmic advances (e.g., linear pro- 

gramming, queuing theory) and the advent of electronic computation contributed to the 

solution of larger and more complex optimization problems. [150:pp. 3-5]. Thus, although 

one can easily imagine Darius and his generals clustered around an ancient "white board" 

manually employing a primitive version of these algorithms, we now focus on computational 

implementations of current "state of the art" algorithms. 

Several algorithmic MOP solution approaches can be identified including enumera- 

tive, deterministic, and stochastic schemes [126]. Because many MOPs are high-dimen- 

sional, discontinuous, multimodal, and/or Nondeterministic Polynomial (NP)-Complete, 

stochastic methods often give better performance. This research focuses on a class of 

stochastic computational methods for solving real-world scientific and engineering MOPs 

called Evolutionary Algorithms (EAs), specifically centering on what we term Multiobjec- 

tive Evolutionary Algorithms (MOEAs). 

Webster's dictionary defines the term effective as the production of or the power 

to produce an acceptable result; efficient is defined as acting in such a way as to avoid 

resource loss or waste in functioning [339]. The term engineering is then defined as planning 
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with more or less subtle skill. By addressing relevant issues, this research shows "well- 

engineered" MOEAs have the potential to solve some real-world MOPs both effectively 

and efficiently. 

1.3   Research Goals and Objectives 

This research focuses on the foundations of MOEA application to scientific and engi- 

neering MOPs. A myriad of related issues is involved in this effort, but broadly speaking, 

this investigation attempts to achieve three major goals: MOEA classifications, analyses, 

and innovations. 

1.3.1 Goal 1: MOEA Classifications. Classifying any related set of items may 

not be a simple task as classification characteristics may be conflicting, complementary, 

subjective, and so forth. As both the MOP and MOEA domains are quite complex, these 

may be the reasons why few researchers have attempted to organize the MOEA literature 

into a coherent whole. This research effort attempts to place a cohesive "wrapper" around 

both the MOEA literature and the major factors to consider when solving MOPs with 

MOEAs. Research objectives supporting this goal are listed in Table 1.1. 

 Table 1.1.     MOEA Classifications' Objectives  
Goal: MOEA Classifications 
Objectives: 
Develop and refine a sound, extensible basis for MOEA classification 
Classify known implementations 
Organize key problem/algorithm domain components of classified MOEAs 
Organize MOEA test functions used in the literature 

1.3.2 Goal 2: MOEA Analyses. The literature has no self-contained introduc- 

tory document explaining relevant issues to consider when solving MOPs with MOEAs. 

In addition, little literature currently exists regarding MOEA theory. As any effective 

and efficient MOP solution algorithm must incorporate problem domain knowledge and 

appropriate heuristics [218, 346], this study attempts to extend current MOEA theory by 

analyzing key problem and algorithm domain characteristics. This allows for the design 
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and application of "well-engineered" MOEAs. Research objectives supporting this goal are 

listed in Table 1.2. 

 Table 1.2.      MOEA Analyses' Objectives 
Goal: MOEA Analyses 
Objectives: 
Critically consider current MOEA literature based upon classification effort 
Analyze the MOP/MOEA domain integration process 
- Identify and analyze major MOP domain characteristics 
- Identify and analyze key MOEA components used in solving MOPs 
Identify existing "well-engineered" MOEAs 
Identify, analyze, and classify metrics for use in comparing MOP solutions 

1.3.3 Goal 3: MOEA Innovations. This dissertation attempts to extend MOEA 

"state of the art." Its classification and analysis identifies several shortcomings in the field; 

the theoretical and practical innovations it offers are meant to expand the field's knowledge 

and to stimulate critical thinking among other researchers. Research objectives supporting 

this goal are listed in Table 1.3. 

 Table 1.3.      MOEA Innovations' Objectives  
Goal: MOEA Innovations 
Objectives: 
Define the presence and role of Building Blocks (BBs) in MOP solutions 
Engineer an MOEA to explicitly manipulate BBs in solving MOPs 
- Incorporate relevant analytical results in designing a BB-based MOEA 
- Determine performance of the new MOEA 
- Determine benefits of a parallel implementation 
Substantiate and propose an MOEA test function suite 
Substantiate and execute MOEA experiments 
- Use developed metrics, test functions, and suitable MOEAs 
Relate experimental results to MOEA application in real-world MOPs 

1.4    Research Approach and Scope 

This research adopts a methodical approach in accomplishing the previously defined 

goals and objectives. It performs an in-depth investigation into both the problem (MOP) 

and algorithm (MOEA) domains via an extensive literature review. Insight gained through 

this review is then used in engineering an innovative EA, and in designing a proposed 
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MOEA test suite and performance metrics. Finally, appropriate MOEA experiments are 

designed and executed using the developed metrics, their results analyzed, and conclusions 

presented. 

This research's goals and objectives (see Section 1.3) clearly define its focus. How- 

ever, some general comments further clarify this document's scope. First, this research 

assumes the reader has a basic understanding of EAs, general mathematics, and computer 

engineering. Second, any software developed supporting this research may not completely 

follow accepted software engineering practices since suitable existing software may be mod- 

ified when possible. We also employ rapid prototyping, and intend to make any software 

implementation largely platform and operating system independent. Last, although this 

research focuses and reports on primarily theoretical concepts, real-world MOP issues are 

not ignored. 

1.5    Document Organization 

The remainder of this document is organized as follows. Chapter II gives an overview 

of MOPs, general optimization techniques, EAs, and MOEAs; it also offers new theorems 

and definitions. Chapter III presents in-depth analyses of MOEA "state of the art," dis- 

cussing practical and theoretical algorithm design considerations. Chapter IV defines BB 

concepts and their use in EAs, then presents a new MOEA (called the Multiobjective messy 

Genetic Algorithm (MOMGA)) qualitatively different than any existing implementation. 

The MOMGA explicitly manipulates BBs in its search for MOP solutions. Relevant al- 

gorithmic test suite issues are discussed in Chapter V, which then substantiates/proposes 

MOPs for inclusion in an MOEA test suite. Chapters VI and VII provide both the exper- 

imental methodology for and analysis of experiments performed supporting this research. 

Chapter VIII then concludes the document's body by recapping its major contributions. 

Several appendices providing background and reference information are included. 

Appendix A contains the extensive cataloged MOEA literature review used as the basis 

for much of Chapter Ill's presented analysis. Appendix B contains numeric MOP test 

functions used in the MOEA literature; Appendices C and D then present corresponding 

graphs for these functions showing each MOP's salient characteristics. 
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II.   Multiobjective Optimization and Evolutionary Algorithms 

In relieving the brain of all unnecessary work, a good notation sets it free to concentrate on 
more advanced problems, and, in effect, increases the mental power of the race. 

Alfred North Whitehead 

2.1 Introduction 

This chapter provides an overview of the problem and algorithm domains considered 

within this research. Neither is straightforward. Thus, we present key concepts defin- 

ing and bounding both the problem class (MOPs) and algorithms selected to solve them 

(MOEAs). Clearly comprehending this basic information makes it easier to grasp more 

detailed concepts presented later. 

Section 2.2 defines the MOP domain and offers new related theorems and definitions. 

Section 2.3 presents an overview of general search and optimization techniques, giving a 

framework within which to place the algorithms focused on by this research. Key elements 

of these EAs/MOEAs are given in Sections 2.4 and 2.5. Finally, an MOEA literature 

review and technique classification scheme are described in Section 2.6. 

2.2 MOP Definition and Overview 

Global optimization is the process of finding the global minimum1 within some search 

space. The single-objective global optimization problem is formally summarized in the 

following definition [17:pg. 35]: 

Definition 1    (Global Minimum):     Given a function f : 0 C Rn -+ R, ft ^ 0, for 

x G ft the value f* = f(x*) > —oo is called a global minimum if and only if 

Weft:   /(£*)</(£). (2.1) 

1Or maximum, since min{.F(z)} = — max{—F(x)}. 
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Then, x* is the global minimum solution(s), f is the objective function, and the set Q, is 

the feasible region. The problem of determining the global minimum solution(s) is called 

the global optimization problem. □ 

Although single-objective optimization problems may have a unique optimal solution, 

MOPs (as a rule) present a possibly uncountable set of solutions, which when evaluated, 

produce vectors whose components represent trade-offs in objective space. A decision 

maker then implicitly chooses an acceptable solution (or solutions) by selecting one or 

more of these vectors. MOPs are mathematically defined as follows: 

Definition 2 (General MOP): In general, an MOP minimizes F{x) = (fi(x),... , fk(x)) 

subject to gi(x) <0, j = l,...,m,f6fl. An MOP solution minimizes the components of 

a vector F(x) where x is an n-dimensional decision variable vector (x = x\,... , xn) from 

some universe £1. d 

An MOP thus consists of n decision variables, m constraints, and k objectives, of 

which any or all of the objective functions may be linear or nonlinear [158]. The MOP's 

evaluation function, F : Q —> A, maps decision variables (x = x\,... ,xn) to vectors 

(y = ai,..., ak). This situation is represented in Figure 2.1 for the case n = 2, m = 0, and 

k = 3. This mapping may or may not be onto some region of objective function space, de- 

pendent upon the functions and constraints composing the particular MOP. Furthermore, 

all problems discussed in this dissertation are assumed to be minimization problems unless 

otherwise specified, and to be primitive recursive (i.e., computable) [211]. 

MOPs are characterized by distinct measures of performance (the objectives) which 

may be (in)dependent and/or non-commensurable. For example, a radio antenna's trans- 

mit power and direct monetary cost may have little dependence on each other (past a 

certain point); they are also measured in different units (watts vs. dollars). The multi- 

ple objectives being optimized almost always conflict, placing a partial, rather than total, 

ordering on the search space. In fact, finding the global optimum of a general MOP is 

TVP-Complete [17:pg. 56]. "Perfect" MOP solutions, where all decision variables sat- 

isfy associated constraints and the objective function attains a global minimum, may not 
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Figure 2.1.     MOP Evaluation Mapping 

even exist. In addition, as Horn and others do [152], we use the terms objective, crite- 

ria, and attribute interchangeably to represent an MOP's goals or objectives (i.e., distinct 

mathematical functions) to be achieved, even though they are subtly distinguished in the 

literature. We also use the terms objective space or objective function space to denote the 

coordinate space within which vectors resulting from evaluating an MOP are plotted. 

Because of these characteristics (multiple objectives and constraints), MOPs may 

require specialized optimization techniques. Regardless of implemented technique, a key 

concept in determining a set of MOP solutions is that of Pareto Optimality. 

2.2.1 Pareto Concepts. Although Pareto optimality, and its related concepts and 

terminology are frequently invoked, MOEA researchers often erroneously use them in the 

literature. To ensure understanding and consistency we define Pareto Dominance, Pareto 

Optimality, the Pareto Optimal Set, and the Pareto Front. An associated symbolic notation 

is introduced later in Section 2.5.1. Using the MOP notation presented in Definition 2 we 

mathematically define these key Pareto concepts [27] as follows: 

Definition 3 (Pareto Dominance): A vector u = (ui,... ,Uk) is said to dominate 

v = (i7i,... ,Vk) (denoted by u -< v) if and only if u is partially less than v, i.e., Vi £ 

{1,... ,k}, Ui < Vi A 3i G {1,... ,k} : Ui < V{. □ 

2-3 



Definition 4 (Pareto Optimality): A solution x £ ft is said to be Pareto optimal with 

respect to ft if and only if there is no x' £ ft for which v — F(x') = (fi(x'),... ,fk(x')) 

dominates u = F(x) = (/i(z),... ,fk(x)). The phrase "Pareto optimal" is taken to mean 

with respect to the entire decision variable space unless otherwise specified. D 

Definition 5 (Pareto Optimal Set): For a given MOP F(x), the Pareto optimal set 

(V*) is defined as: 

V* := {x £ ft | ^3 x' £ ft F(x') X F(x)}. (2.2) 

D 

Definition 6   (Pareto Front):    For a given MOP F(x) and Pareto optimal set V*, the 

Pareto front (VT*) is defined as: 

VT* := {u = F(x) = (A(x),... , fk(x)) \ x £ V*}. (2.3) 

D 

Pareto optimal solutions are also termed non-inferior, admissible, or efficient solu- 

tions [152]; their corresponding vectors are termed nondominated. These solutions may 

have no clearly apparent relationship besides their membership in the Pareto optimal set. 

This is the set of all solutions whose corresponding vectors are nondominated with respect 

to all other comparison vectors; we stress here that Pareto optimal solutions are classified 

as such based on their evaluated functional values. When plotted in objective space, the 

nondominated vectors are collectively known as the Pareto front. Again, V* is a subset 

of some solution set. Its evaluated objective vectors form VT*, of which each is nondomi- 

nated with respect to all objective vectors produced by evaluating every possible solution 

in ft. 

As an example of these Pareto concepts we present the one-variable, two-objective 

problem denoted as F\. This is the same problem used by Vincent and Grantham, Schaffer, 
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and Srinivas and Deb for identical purposes [306]. This MOP is defined as: 

Fl = (/i(aO,/2(aO), where 

fi    =   x\ 

h   =    (x-2)2. (2.4) 

Figure 2.2 implies that the Pareto optimal set is {x \ x < 0 or x > 2}. The solution 

x = 0 is optimal with respect to /i but not /2; the solution x = 2 is optimal with respect 

to fi but not j\. Any solution {x | x £ 0 < x < 2} is not a member of the Pareto optimal 

set because it is not better than a solution in the set with respect to either objective. 

Rudolph [276] has also shown that given: 

F = (f1(x),f2(x)), where 

h 

f2   =    \\x-z\\2 ,with0^zeR, (2.5) 

the Pareto optimal set for this general MOP is: 

V* = {x e R\ x = rz, r G [0,1]} (2.6) 
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We point out a significant difference between Figures 2.2 and 2.3. Figure 2.2 plots 

the values of functions fa and fa for different values of the independent variable. However, 

Figure 2.3 represents the values of function fa plotted against those of function fa for the 

same value of the independent variable. In other words, Figure 2.3 is a graph in objective 

space displaying this MOP's vectors as points. The nondominated vectors (graphed as 

asterisks) represent FVs Pareto front. 

Note that the Decision Maker (DM) is often selecting solutions via choice of accept- 

able objective performance, represented by the Pareto front. Choosing an MOP solution 

that optimizes only one objective may well ignore solutions, which from an overall stand- 

point, are "better." The Pareto optimal set contains those better solutions. Identifying a 

set of Pareto optimal solutions is thus key for a DM's selection of a "compromise" solution 

satisfying the objectives as "best" possible. Of course, the accuracy of the decision maker's 

view depends on both the true Pareto optimal set and the set presented as Pareto optimal. 

We note here that derived solutions of real-world MOPs often offer only a finite 

number of points which may or may not be truly Pareto optimal. Any time the real- 

continuous) world is modeled (e.g., via objective functions) upon a computer (a discrete 

machine), there is a fidelity loss between reality's uncountable infinity and the implemented 

finite, discretized model. Complex MOPs do not generally lend themselves to analytical 

determination of the actual Pareto front, thus making even a computational approximation 

of an MOP's global optimum difficult. 

2.2.2 Pareto-Related Contributions. We have developed new Pareto-based theo- 

rems and definitions to support research objectives and other theoretical results. As many 

MOEAs assume each generational population contains Pareto optimal solutions (with re- 

spect to that population), Theorem 1 substantiates this assumption. As the MOEA litera- 

ture offers little guidance concerning possible Pareto front cardinality and dimensionality, 

Theorems 2 and 3 provides an upper bound. Thus, these Pareto contributions further 

bound both problem and algorithm domains. They are presented here for coherence. 
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2.2.2.1 Pareto Optimal Set Minimal Cardinality. Because of the manner 

in which Pareto optimality is defined, any non-empty finite solution set contains at least 

one Pareto optimal solution (with respect to that set). As this may be non-intuitive, and 

because it is assumed in many MOEA implementations, we present the following theorem 

for the general case. 

Theorem 1: Given an MOP with feasible region O and any non-empty finite solution 

set u> C $7, there exists at least one solution x £ u that is Pareto optimal with respect to 

u>. D 

Proof: Label the k-dimensional objective vectors resulting from evaluating each X{ £ u? 

in non-decreasing, lexicographic order as V\, V2,... , vn with V{ = (v,-,i, Vj,2, • • • , V{,k)- If all 

Vi are equal then v\ is nondominated. Otherwise, there exists a smallest j £ {1,... , k} 

such that for some i £ {1,... , n - 1}, vij = «2j = ... = u;j < Ui+ij < v»+2,j < • • • < vnj. 

This shows that v,-+i, «8-+2, • • • , vn do not dominate v\. 

If i = 1 then we have shown v\ is nondominated. On the other hand, if i / 1 and 

j = k we have shown vi = t»2 = ... = V{ and v\ is again nondominated. Otherwise, there 

exists a smallest j' £ {j + 1,... , k} such that for some i' £ {1,... , i — 1}, ^j/ = v2,j' = 

... = Vj/j; < Vi'+ij' < ^t'+2j' < • • • < v»j». If either i' = 1, or i' ^ 1 and j' = fc, then we 

have again shown v\ is nondominated. Otherwise we continue this process. Because k is 

finite we eventually show v\ is nondominated and therefore there is at least one solution 

that is Pareto optimal with respect to u>. Q.E.D. 

2.2.2.2 Pareto Front Structure. Theoretical bounds are useful in defining 

a given problem domain. We now present a corollary and theorems defining the structural 

bounds any Pareto front may attain. Corollary 1 provides a lower bound for the cardinality 

of the Pareto front. 
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Corollary 1: Given an MOP with feasible region Ü and any non-empty finite solution 

set u C fi, its Pareto front VT* is a set containing at least one vector. This result follows 

directly from Theorem 1. □ 

Theorem 2 provides an upper bound on the cardinality of the Pareto front for 

MOPs with Euclidean objective spaces (spaces containing all n-tuples of real numbers, 

{x\, X2, • • • , xn), denoted by W1). This includes all MOPs of interest in this research. 

Theorem 2: The Pareto front of any MOP is composed of at most an uncountably 

infinite number of vectors. □ 

Proof: The Pareto front's cardinality is bounded above by the cardinality of the objective 

space. Q.E.D. 

We use the following definition in bounding the Pareto front's dimensionality [6:pg. 

174]: 

Definition 7 (Box-Counting Dimension): A bounded set S in Rk has box-counting 

dimension 

InN(e) 
boxdim(S) = lim Yjhr ' (2J) 

where the limit exists and where N(e) is the number of boxes that intersect S. □ 

Theorem 3: For a given MOP F(x) and Pareto optimal set V*, if the Pareto front VT* 

is bounded, then it is a set with box-counting dimension no greater than (k — 1). □ 

Proof: Without loss of generality assume VT* is a bounded set in [0, l]h. Take S 

to be the closure of VT*. Because [0, l]fc is closed, 5 is a bounded set in [0, l]fc. Let 

[0, l]k be partitioned by a grid of &-dimensional boxes of side-length e, where the boxes' 
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sides are parallel to the objective axes. For each r £ R — {0,e, 2e,... , LeJc}fc * define 

Rr = [ri,n + e] x [r-2,7-2 + e] x • • • X [rk-i,rk-i + e] x [0,1]. If S n Rr # 0, define pr 

to be the point that minimizes fk over Rr and 5r to be any box that includes pr. Also 

define Se = {pr} and Be — UrBr. Then Be covers 5e. Because 5 is closed lim^o ^ = S, 

and 5 = lime^.o-Be covers S. Because VT* C S, B also covers VT*. Hence, N(e) = 

\ R\— r^l*1-1, and the box-counting dimension oiVT* is 

lim^i]^l    <   limln«^ 
o     ln(i) -    -o     ln(I) 

(fc-l)[ln2 + ln(i)] 
lim 

ln(i) 

r(fc-l)ln2 

k - 1 (2.8) 

n.    r(fe-l)ln2     ,, 
S3'4^-+(*-1)1 

Q.E.D. 

In practice, the Pareto front is a collection of (k — 1) or lower dimensional surfaces 

we term Pareto surfaces. The special case where k = 2 results in surfaces we term Pareto 

curves. Horn [154] and Thomas [318] state that a ^-objective MOP's Pareto front is a 

k — 1 dimensional surface. We have just shown this is incorrect; the front is at most 

(k — 1) dimensional surface. Although asymptotic bounds are useful, researchers must also 

account for the Pareto front's possible shape within those bounds. Theorem 3 then implies 

that any proposed MOEA benchmark test function suite should contain MOPs with Pareto 

fronts composed of Pareto curve(s), Pareto surface(s), or some combination of the two. 

2.2.2.3 MOP Global Optimum. Defining an MOP's global optimum is not 

a trivial task as the "best" compromise solution may vary among DMs due to individual 

beliefs and biases. Solutions may also have some temporal dependence, e.g., acceptable 

resource expenditures may vary from month to month. Thus, there is no universally 

accepted definition for the MOP global optimization problem. However, we define an 

MOP's global optimum to substantiate later algorithmic engineering decisions. 
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Pareto optimal solutions are those which when evaluated, produce vectors whose 

performance in one dimension cannot be improved without adversely affecting another. 

The Pareto front VT* determined by evaluating V* is fixed by the defined MOP and does 

not change. Thus, V* represents the "best" solutions available and allows the definition of 

an MOP's global optimum. 

Definition 8   (MOP Global Minimum):    Given a function F : ft C Rn -* Rk, ft ^ 0, 

k > 2, for x 6 ft the set VT* = F(x*) > (—oo,... , — oo) is called the global minimum if 

and only if 

W G ft :   F(x*) < F(x) . (2.9) 

Then, x*, i = 1,... ,n is the global minimum solution set (i.e., V*), F is the multiple 

objective function, and the set ft is the feasible region. The problem of determining the 

global minimum solution set is called the MOP global optimization problem. □ 

2.3    General Optimization Algorithm Overview 

We classify general search and optimization techniques into three categories: enumer- 

ative, deterministic, and stochastic (random). Although an enumerative search is deter- 

ministic we make a distinction here as it employs no heuristics. Figure 2.4 shows common 

examples of each type. 

Enumerative schemes are perhaps the simplest search strategy. Within some defined 

finite search space each possible solution is evaluated. However, it is easily seen this 

technique is inefficient or even infeasible as search spaces become large. As many real- 

world problems are computationally intensive, some means of limiting the search space 

must be implemented to find "acceptable" solutions in "acceptable" time. Deterministic 

algorithms attempt this by incorporating problem domain knowledge. Many of these are 

considered graph/tree search algorithms and are described as such here. 

Greedy algorithms make locally optimal choices, assuming optimal sub-solutions are 

always part of the globally optimal solution [42, 157]. Thus, these algorithms fail unless 
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Figure 2.4.     Global Optimization Approaches 

that is the case. Hill-climbing algorithms search in the direction of steepest ascent from 

the current position. These algorithms work best on unimodal functions, but the presence 

of local optima, plateaus, or ridges in the fitness (search) landscape reduce algorithm 

effectiveness [277]. Greedy and hill-climbing strategies are irrevocable. They repeatedly 

expand a node, examine all possible successors (then expanding the "most promising" 

node), and keep no record of past expanded nodes [252]. 

Branch and bound search techniques need problem specific heuristics/decision algo- 

rithms to limit the search space [120, 252]. They compute some bound at a given node 

which determines whether the node is "promising;" several nodes' bounds are then com- 

pared and the algorithm branches to the "most promising" node [233]. Basic depth-first 

search is blind or uninformed in that the search order is independent of solution location 

(except for search termination). It expands a node, generates all successors, expands a 

successor, and so forth. If the search is blocked (e.g., it reaches a tree's bottom level) it 

resumes from the deepest node left behind [252]. Backtracking is a depth-first search vari- 

ant which "backtracks" to a node's parent if the node is determined "unpromising" [233]. 

Breadth-first search is also uninformed. It differs from depth-first search in its actions after 

node expansion, where it progressively explores the graph one layer at a time [252]. Best- 
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first search uses heuristic information to place numerical values on a node's "promise"; the 

node with highest promise is examined first [252]. A*, Z*, and others are popular best- 

first search variants selecting a node to expand based both on "promise" and the overall 

cost to arrive at that node. Finally, calculus-based search methods at a minimum require 

continuity in some variable domain for an optimal value to be found [13]. 

Greedy and hill-climbing algorithms, branch and bound tree/graph search techniques, 

depth- and breadth-first search, best-first search, and calculus-based methods are all de- 

terministic methods successfully used in solving a wide variety of problems [42, 126, 233]. 

However, many MOPs are high-dimensional, discontinuous, multimodal, and/or NP- 

Complete. Deterministic methods are often ineffective when applied to iVP-Complete 

or other high-dimensional problems because they are handicapped by their requirement 

for problem domain knowledge (heuristics) to direct or limit search [106, 120, 126] in 

these exceptionally large search spaces. Problems exhibiting one or more of these above 

characteristics are termed irregular [190]. 

Because many real-world scientific and engineering MOPs are irregular, enumerative 

and deterministic search techniques are then unsuitable. Stochastic search and optimiza- 

tion approaches such as Simulated Annealing (SA), Monte Carlo, Tabu search, and Evolu- 

tionary Computation (EC) techniques were developed as alternative approaches for solving 

these irregular problems [126, 218]. Stochastic methods require a function assigning fitness 

values to possible (or partial) solutions, and an encode/decode (mapping) mechanism be- 

tween the problem and algorithm domains. Although some are shown to "eventually" find 

an optimum most cannot guarantee the optimal solution. They in general provide good 

solutions to a wide range of optimization problems which traditional deterministic search 

methods find difficult [126, 157]. 

A random search is the simplest stochastic search strategy, as it simply evaluates 

a given number of randomly selected solutions. A random walk is very similar, except 

that the next solution evaluated is randomly selected using the last evaluated solution 

as a starting point [333]. Like enumeration, though, these strategies are not efficient for 

many MOPs because of their failure to incorporate problem domain knowledge. Random 

searches can generally expect to do no better than enumerative ones [126:pg. 5]. 
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SA is an algorithm explicitly modeled on an annealing analogy, where, for example, 

a liquid is heated and then gradually cooled until it freezes. Where hill-climbing chooses 

the best move from some node SA picks a random one. If the move improves the current 

optimum it is always executed, else it is made with some probability p < 1. This probability 

exponentially decreases either by time or with the amount by which the current optimum is 

worsened [277]. If water's temperature is lowered slowly enough it attains a lowest-energy 

configuration; the analogy for SA is that if the "move" probability decreases slowly enough 

the global optimum is found. 

In general, Monte Carlo methods involve simulations dealing with stochastic events; 

they employ a pure random search where any selected trial solution is fully independent 

of any previous choice and its outcome [295]. The current "best" solution and associated 

decision variables are stored as a comparator. Tabu search is a meta-strategy developed to 

avoid getting "stuck" on local optima. It keeps a record of both visited solutions and the 

"paths" which reached them in different "memories." This information restricts the choice 

of solutions to evaluate next. Tabu search is often integrated with other optimization 

methods [295]. 

EC is a generic term for several stochastic search methods which computationally sim- 

ulate the natural evolutionary process. As a recognized research field EC is young, although 

its associated techniques have existed for about thirty years. EC embodies the techniques of 

Genetic Algorithms (GAs), Evolutionsstrategies, or Evolution Strategies (ESs), and Evo- 

lutionary Programming (EP), collectively known as EAs. These techniques are loosely 

based on natural evolution and the Darwinian concept of "Survival of the Fittest" [126]. 

Common between them are the reproduction, random variation, competition, and selec- 

tion of contending individuals within some population [104]. In general, an EA consists 

of a population of encoded solutions (individuals) manipulated by a set of operators and 

evaluated by some fitness function. 

Each solution's associated fitness determines which survive into the next generation. 

Although sometimes considered equivalent, the terms EA and EC &re used separately in 
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this document to preserve the distinction between EAs and other EC techniques (e.g., 

Genetic Programming (GP) and learning classifier systems)2. 

MOP complexity and the shortcomings of deterministic search methods also drove 

creation of several optimization techniques by the Operations Research (OR) community. 

These methods (whether linear or non-linear, deterministic or stochastic) can be grouped 

under the rubric mathematical programming. These methods treat constraints as the main 

problem aspect [295]. Linear programming is designed to solve problems in which the 

objective function and all constraint relations are linear [150]. Conversely, nonlinear pro- 

gramming techniques solve some MOPs not meeting those restrictions but require convex 

constraint functions [295]. We note here that many problem domain assumptions must 

be satisfied when using linear programming, and that many real-world scientific and engi- 

neering problems may only be modeled by non-linear functions [150:pp. 138,574]. Finally, 

stochastic programming is used when random-valued parameters and objective functions 

subject to statistical perturbations are part of the problem formulation. Depending on the 

type of variables used in the problem, several variants of these methods exist (i.e., discrete, 

integer, binary, and mixed-integer programming) [295]. 

2.4    EA Overview 

The following presentation defines basic EA structural terms and concepts;3 the 

described terms' "meanings" are normally analogous to their genetic counterparts. A 

structure or individual is an encoded solution to some problem. Typically, an individual is 

represented as a string (or string of strings) corresponding to a biological genotype. This 

genotype defines an individual organism when it is expressed (decoded) into a phenotype. 

A genotype is composed of one or more chromosomes, where each chromosome is composed 

of separate genes which take on certain values (alleles) from some genetic alphabet. A locus 

identifies a gene's position within the chromosome. Thus, each individual decodes into a 

set of parameters used as input to the function under consideration. Finally, a given set of 

2Although GP and learning classifier systems may be classified as EA techniques, we and others consider 
them conceptually different approaches to EC [180]. 

3There is no shortage of introductory EA texts. The general reader is referred to Goldberg [126], 
Michalewicz [218], or Mitchell [223]; a more technical presentation is given by Back [17]. 
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chromosomes is termed a population. These concepts are pictured in Figure 2.5 (for both 

binary and real-valued chromosomes) and in Figure 2.6. 

Locus 
(Position) 

123456789 10 

Population 

1 0 1 1 1 1 0 0 1 0 
1 0 1 0 0 0 1 1 1 0 
0 0 1 1 1 1 1 0 0 0 
0 1 0 0 1 0 1 1 1 1 
0 1 1 0 0 1 0 0 1 0 
0 1 1 1 0 1 1 0 0 0 
1 0 0 0 0 1 1 1 1 1 
1 0 I 1 0 0 0 1 0 1 
0 0 1 1 0 1 0 1 1 0 
0 0 1 ;o) 1 0 1 1 0 0 

Chromosome (String) 
Chromosome (String) 

1 

Locus 
(Position) 

2 3 

4.3852 0.5837 8.3853 
• 
• 
• 

6.3964 5.5495 1.0937 
1.0937 8.3853 9.3856 
6.3964 1.0645 0.5837 

Chromosome (String) L Allele (Value) = 6.3964 

Allele (Value) = 0    ' '    Allele (Value) = 1 

Figure 2.5.     Generalized EA Data Structure and Terminology 

Just as in nature, Evolutionary Operators (EVOPs) operate on an EA's population 

attempting to generate solutions with higher and higher fitness. The three major EVOPs 

associated with EAs are mutation, recombination, and selection. Illustrating this, Fig- 

ure 2.7 shows bitwise mutation on an encoded string where a '1' is changed to a '0', or 

vice versa. Figure 2.8 shows single-point crossover (a form of recombination) operating on 

two parent binary strings; each parent is cut and recombined with a piece of the other. 

Above-average individuals in the population are selected (reproduced) to become members 

of the next generation more often than below-average individuals. The selection EVOP 

effectively gives strings with higher fitness a higher probability of contributing one or more 

children in the succeeding generation. The Schema Theorem describes this process and 

is discussed in Section 4.2. Figure 2.9 shows the operation of the common roulette-wheel 

selection (a fitness proportional selection operator) on two different populations of four 

strings each. Each string in the population is assigned a portion of the wheel proportional 

to the ratio of its fitness and the population's average fitness. 

Real-valued chromosomes also undergo these same EVOPs although implemented 

differently. All EAs use some subset or variation of these EVOPs. Many variations on 

the basic operators exist; these are dependent upon problem domain constraints affecting 

chromosome structure and alleles [17]. 
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□ Population □ Set of Individuals (Solutions) 

□ Parent □ Member of Current Generation 

Q Children □ Members of Next Generation 

□ Generation        □ Successively Created Populations 
(EA Iteration) 

□ Chromosome    Q Solution's Coded Form; Vector 
(String) Consists of Genes 
With Alleles Assigned 

□ Fitness □ Number Assigned to a Solution; 
Represent's "Desirability" w 

Figure 2.6.      Key EA Components 

An EA requires both an objective and fitness function, which are fundamentally 

different. The objective function defines the EA's optimality condition (and is a feature 

of the problem domain) while the fitness function (in the algorithm domain) measures 

how "well" a particular solution satisfies that condition and assigns a corresponding real- 

value to that solution. However, these functions are in principle identical [17:pg. 68] (e.g., 

numerical optimization problems). 

Many other selection techniques are implemented by EAs, e.g., tournament and rank- 

ing [17]. Tournament selection operates by randomly choosing some number q individuals 

from the generational population and selecting the "best" to survive into the next gen- 

eration. Binary tournaments (q = 2) are probably the most common. Ranking assigns 

selection probabilities solely on an individual's rank, ignoring absolute fitness values. Two 

other selection techniques we note in detail are the (/J, + A) and (/J, A) selection strategies, 

where fi represents the number of parent solutions and A the number of children.   The 
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Crossover Point 

Mutation Point 

1 
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Parent 2:       b4^ ^.'"W,"' "* «1 Parent:       1 SH           1 
Offspring 1:      |:;l|; 

Offspring 2:       1 

;;■■■■■ ■■■■■■■:■ .^^■^■^-::-::-:.-:B"J».<»■.■»:»   .».«.».».A.oA A..»^-l'il Offspring:       [ ■  
P                                                                                                         l 

Figure 2.7.     Bitwise Mutation 
Figure 2.8.     Single-Point 

Crossover 

String Fitness 
SI 
S2 
S3 
S4 

12 
12 
12 
12 

mean 12 

String Fitness 
SI 
S2 
S3 
S4 

20 
10 

5 
5 

mean 10 

Equal Fitness Unequal Fitness 

Figure 2.9.     Roulette Wheel Selection 

former selects the \i best individuals drawing from both the parents and children, the latter 

selects // individuals from the child population only. 

Why is the choice of EA selection technique so important? Two conflicting goals 

are common to all EA search: exploration and exploitation. Back also offers the analogous 

terms of convergence reliability and velocity, large and small genotypic diversity, and "soft" 

and "hard" selection [17:pg. 165]. No matter the terminology, one goal is achieved only 

at the expense of another. An EA's selective pressure is the control mechanism determin- 

ing the type of search performed. Back's analysis shows a general ordering of selection 

techniques (listed in order of increasing selective pressure): Proportional, linear ranking, 

tournament, and (/J, A) selection [17:pg. 180]. Finally, an EA's decision function deter- 

mines when execution stops. Table 2.1 highlights the major differences between the three 

major EC instantiations. 
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Table 2.1.     Key EA Implementation Differences 
EA Type Representation EVOPs 

EP Real-values Mutation and (// + A) 
selection alone 

ES Real-values and 
strategy parameters 

Mutation, recombina- 
tion, and (/i + A) or 
(/i, A) selection 

GA Historically binary; 
Real-values now 
common 

Mutation, recombina- 
tion, and selection 

It is beyond the scope of this research to provide an in-depth analysis of general 

EVOPs and EA components. Where appropriate, specific EA parameters and values are 

discussed later in this document to support design decisions.4 

Although much room for creativity exists when selecting and defining EA instan- 

tiations (e.g., genetic representation and specific EVOPs), careful consideration must be 

given to the mapping from problem to algorithm domains. "Improper" representations 

and/or operators may have detrimental effects upon EA performance (e.g., Hamming 

cliffs [17:pg. 229]). Although there is no unique combination guaranteeing "good" perfor- 

mance [105, 346], choosing wisely may well result in more effective and efficient implemen- 

tations. 

2.4-1 EA Mathematical Definition. To formally define an EA its general algo- 

rithm is described in mathematical terms, allowing for exact specification of various EA 

instantiations. In this framework, each EA is associated with a non-empty set I called 

the EA's individual space. Each individual a £ I normally represents a candidate solution 

to the problem being solved by the EA. Individuals are often represented as a vector (a) 

where the vector's dimensions are analogous to a chromosome's genes. The general frame- 

work leaves each individual's dimensions unspecified; an individual (a) is simply that and 

is modified as necessary for the particular EA instance. 

4For further information, the interested researcher is directed to the Handbook of Evolutionary Com- 
putation [19], probably the most comprehensive collection of articles discussing EC, its instantiations, and 
applications. 
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When defining (generational) population transformations Back denotes the resulting 

collection of \i individuals via Iß, and denotes population transformations by the follow- 

ing relationship: T : Iß -»■ Iß, where ß G N [17]. However, some EA variants obtain 

resulting populations whose size is not equal to their predecessors. Thus, this general 

framework represents a population transformation via the relationship T : Iß —> Iß', indi- 

cating succeeding populations may contain the same or different numbers of individuals. 

This framework also represents all population sizes, evolutionary operators, and param- 

eters as sequences [216]. This is due to the fact that different EAs use these factors in 

slightly different ways. The general algorithm thus recognizes and explicitly identifies this 

nuance. Having discussed the relevant background terminology, an EA is then defined 

as [216][l7:pg. 66]: 

Definition 9 (Evolutionary Algorithm): Let I be a non-empty set (the individual 

space), {A*^}ieN a sequence in Z+ (the parent population sizes), {// }t"eN a sequence in 

Z+ (the offspring population sizes), $ : I —»■ R a fitness function, i : Uf^iC^)^ —y 

{true, false} (the termination criterion), x G {true, false}, r a sequence {r-W} of recom- 

bination operators A%> : Xj. —► Tffir ,T(/M' ,Iß )), m a sequence {m^>} of mu- 

tation operators mS1' : Xm —► T \Stm' ,T ilß ,Iß )), s a sequence {s^>} of selection 

operators a« : X? x T(/,R) — T (ft^T ((V('W^ ,/"(i+1))), 0^ G X® (the 

recombination parameters^, Qm' G Xm (the mutation parameters^, and 6y G Xg (the 

selection parameters). Then the algorithm shown in Figure 2.10 is called an Evolutionary 

Algorithm. □ 

2.5    MOE A Overview 

MOEAs are a recently developed algorithmic tool with which to solve MOPs. Their 

popularity can be attributed to several desirable characteristics. For example, Horn notes 

that many optimization approaches in Section 2.3 were developed for searching intractably 

large spaces, but that traditional MOP solution techniques generally assume small, enu- 

merable search spaces [152]. More simply, some MOP solution approaches focus on search 

and others on multiobjective decision making.   MOEAs are then very attractive MOP 
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t :=0; 

initialize P(0) := {a 
while (i({P(0), 

recombine: P'(t) 

i(0),...,aM(0)}GJ"(° 
P(t)}) ^ true) do 

■■=r%){pm 

). 

mutate: P"{t) := m^p'm 
seteci: 

ifx 
thenP(Z + l):=SW     }(P"(0); 

elseP(< + l):=A'(P''(<)U *(*)); 

fl 

od 

Figure 2.10.     Evolutionary Algorithm Outline 

solution techniques because they address both search and multiobjective decision making. 

Additionally, they have the ability to search partially ordered spaces for several alterna- 

tive trade-offs. Probably most important, however, is the capability for an MOEA to track 

several solutions simultaneously via its population, whereas traditional MOP solution tech- 

niques offer only one solution per "run." Many researchers have successfully used MOEAs 

to find good solutions for complex MOPs (see Appendix A). 

An MOEA's defining characteristic is the set of multiple objectives being simultane- 

ously optimized. Otherwise, a task decomposition clearly shows little structural difference 

between the MOEA and its single-objective EA counterparts. The following definition and 

figures explain this relationship. 

Definition 10   (Multiobjective Evolutionary Algorithm):    Let $ : I —> Rk, (k > 

2, a multiobjective fitness function). If this multiobjective fitness function is substituted for 

the fitness function in Definition 2.10 then the algorithm shown in Figure 2.10 is called a 

Multiobjective Evolutionary Algorithm. □ 

Figures 2.11 and 2.12 respectively show a general EA's and MOEA's task decompo- 

sition.  The major differences are noted as follows.  By definition, Task 2 in the MOEA 
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case computes k (where k > 2) fitness functions. In addition, because MOEAs expect 

a single fitness value with which to perform selection, additional processing is sometimes 

required to transform MOEA solutions' fitness vectors into a scalar (Task 2a). Although 

the various transformation techniques vary in their algorithmic impact (see Section 3.3.4) 

the remainder of the MOEA is structurally identical to its single-objective counterpart. 

However, this does not imply the differences are insignificant. 

General EA Tasks 

1. Initialize Population 
2. Fitness Evaluation 
3. Recombination 
4. Mutation 
5. Selection 

Loop 

©<•) 
Sequential Decomposition 

Figure 2.11.     Generalized EA Task Decomposition 

General MOEA Tasks 

Unitialize Population 
2. Fitness Evaluation 

2a. Vector/Fitness Transformation 
3. Recombination 
4. Mutation 
5. Selection 

Loop 

Sequential Decomposition 

Figure 2.12.     MOEA Task Decomposition 

2.5.1 Pareto Notation. An MOEA's algorithmic structure can easily lead to 

confusion (e.g., multiple, unique populations) when identifying or using Pareto concepts. 

In fact, MOEA researchers have erroneously used Pareto terminology in the literature 

suggesting a more precise notation is required. During MOEA execution, a "current" set 

of Pareto optimal solutions (with respect to the current MOEA generational population) 

is determined at each EA generation and termed PCUrrent(t), where t represents the gen- 

eration number.  Many MOEA implementations also use a secondary population storing 
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nondominated solutions found through the generations [326] (see also Section 3.3.3). Be- 

cause a solution's classification as Pareto optimal depends upon the context within which 

it is evaluated (i.e., the given set of which it's a member), corresponding vectors of this 

set must be (periodically) tested and solutions whose associated vectors are dominated 

removed. 

We term this secondary population Pknown (*)• This term is also annotated with t to 

reflect its possible changes in membership during MOEA execution. Pknown (0) is defined 

as the empty set (0) and Pknown alone as the final set of solutions returned by the MOEA at 

termination. Different secondary population storage strategies exist; the simplest is when 

Pcurrent (*) is added at each generation (i.e., PCUrnnt (<) U Pknown (t - 1))- At any given 

time, Pknown (t) is thus the set of Pareto optimal solutions yet found by the MOEA through 

generation t. Of course, the true Pareto optimal set (termed Ptrue) is not explicitly known 

for problems of any difficulty. Pirue is implicitly defined by the functions composing an 

MOP; it is fixed and does not change. Because of the manner in which Pareto optimality 

is defined PCUrrent(t) is always a non-empty solution set (see Theorem 1). 

Pcurrent(t), Pknown, and Ptrue are sets of MOEA genotypes;5 each set's corresponding 

phenotypes form a Pareto front. We term the associated Pareto front for each of these 

solution sets as PFcurrent(t), PFknown, and PFirue. Thus, when using an MOEA to solve 

MOPs, the implicit assumption is that one of the following holds: Pknown = Ptrue, Pknown C 

Ptrue, or {ui G PFknown,Uj G PFint | Vi, Vj min[distance(ui,Uj)] < e}, where distance is 

defined over some norm (Euclidean, RMS, etc.). 

2.5.2 MOEA Convergence. If there is no chance of a search algorithm finding the 

desired solution(s), it makes no sense to implement it. Given that x is a decision variable, 

/ the space of all feasible decision variables, $ a fitness function, and t the generation 

number, Back proves [17:pg. 129] that an EA converges with probability one if it fulfills 

the following conditions: 

Vaf, x' G /, x1 is reachable from x by means of mutation and recombination;     (2.10) 

5Horn [152] uses Ponu„e, Poffline, and Pactuai instead of PCUrrent{t), Pknown, and Ptrue- Our notation is more 
precise, allowing for each set's generational specification. We also note that Ptrue = V* and PFtrue = VT*. 

2-22 



and the population sequence P(0),P(1),... is monotone, i.e., 

Vi : min{$(2(t + 1) | (x(t + 1) G P(i + 1)} < min{*(f(*) | (x(t) G P(t)}        (2.11) 

Back's definition of monotonicity, appropriate in the context of single objective EAs, 

is fitness based and assumes that the objective space is totally ordered. Neither of these 

restrictions is appropriate in the context of MOEAs. A solution's Pareto-based fitness 

depends on the set within which it is evaluated, and consequently may vary from one 

generation to the next. Also, the objective space for an MOEA is partially and not nec- 

essarily totally ordered. Thus, a convergence theorem for MOEAs requires a more general 

definition of monotonicity that is both fitness independent and appropriate for objective 

spaces that are not totally ordered. 

One such definition is given by the condition 

PknoWn(t) = {x£ Pcurrent(t)U | VP G PCurrent(t) U    S.t.   F(x) * F(x')} (2.12) 

with Pknown (0) = 0. It can be shown by induction on t that under this condition, Pknown (*) 

consists of the set of solutions evaluated through generation t that are Pareto optimal with 

respect to the set of all such solutions. Thus, Pknown (< +1) either retains or improves upon 

solutions in Pknown (*)• In tnis sense, Condition (2.12) ensures that Pknown (*) monotonically 

moves towards Ptme • 

Theorem 4: An MOEA satisfying (2.10) and (2.12) converges to the global optimum of 

an MOP (PFtrue) with probability one, i.e., 

Prob{ lim {Ptrue = P(t)}} = 1 , 
t KX> 

where P(t) = Pknown(t). □ 

Proof: An MOEA may be viewed abstractly as a Markov chain consisting of two states. 

In the first state, Ptrue — Pknown (t), and in the second state this is not the case.   By 
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Condition (2.12), there is zero probability of transitioning from the first state to the second 

state. Thus, the first state is absorbing. By Condition (2.10), there is a non-zero probability 

of transitioning from the second state to the first state. Thus, the second state is transient. 

The theorem follows immediately from Markov chain theory [4]. Q.E.D. 

2.5.2.1 Other Convergence Proofs. Other research also addresses the de- 

sired MOEA convergence. Rudolph's [275] Corollary 2 guarantees that given a countably 

infinite MOEA population and an MOP, at least one decision variable (xj,) sequence exists 

such that f(xk) converges in the mean to PFirue, although it appears his nomenclature is 

inconsistent with accepted definitions. 

Rudolph [276] also independently proved that a specific multiobjective (/i + A = 

1+1) ES converges with probability one to a member of PtTue of the MOP specified by 

Equation 2.5. His distance metric is in the genotype domain, as compared to ours and his 

previous work, which is phenotypically based. The EVOPs in his model are not able to 

search the entire space (in a probabilistic sense) since a step size restriction is placed upon 

the probabilistic mutation operator. Thus, convergence only occurs when the ES's step size 

is proportional to the distance to the Pareto set as shown in the elaborate proof. However, 

this distance is obviously unknown in problems of high complexity which is typical of most 

real-world problems. 

We note his variation kernel (i.e., transition probability function) is equivalent to our 

reachability condition (appropriate mutation and recombination operators allowing every 

point in the search space to be visited). He also refers to at least one sequence leading 

to an associated point on Ptrv,e, as compared to this work which indicates that through 

Pareto ranking all decision variable sequences lead towards Ptne'i likewise, these variables' 

phenotypical expressions lead towards PFtrue. 

Rudolph's theorems are for a specific EA and MOP instantiation with constrained 

EVOPs while ours requires a less-specific EA. Both theorems show that what we seek 

is possible - given MOEAs do converge to an optimal set, although Rudolph defines a 

genotypic optimum and we a phenotypic one.   Using phenotypical information is often 
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more appropriate as a decision maker's costs and profits are more accurately reflected in 

attribute space. 

We note here the more important issue is the rate at which an MOEA converges 

to PFtrve, and whether PFkn0wn(t) uniformly represents PFtrv,e as t —»• oo. The MOEA 

literature is largely silent on these issues, although Rudolph shows the convergence rate 

for the specific (1+1) EA above is sub-exponential [276]. In this document, Chapter VI 

presents metrics for possible use in experimentally determining MOEA convergence rate, 

and Chapter VII shows results for selected experimental problems. 

2.6   MOEA Literature Review and Analysis 

MOEAs are receiving renewed interest by EA researchers. Although the first MOEA 

was published in 1984 [288] and a substantial MOEA literature has since developed, there 

have been only three notable surveys published. Of these, two contain little technical detail 

of the various MOEA techniques and almost no reference at all to the OR methods from 

which the techniques were derived! 

The reviews by Fonseca and Fleming [111] and by Horn [152] (published in 1995 

and 1997) quickly examine major MOEA techniques. The former additionally provides 

many relevant MOP issues from an MOEA perspective. Both classify existing MOEA ap- 

proaches differently: Fonseca and Fleming from a broad algorithmic perspective, and Horn 

from a DM's. More recently, in 1999 Coello Coello [61] presents an MOEA review which 

classifies implementations from a detailed algorithmic standpoint and adds discussions of 

the strengths and weaknesses of each technique. 

The literature survey conducted as part of this dissertation research offers much 

more. First, it expands upon previous reviews by classifying and cataloging all known 

(to date) MOEA efforts and considers more recent and related MOEA citations. Pro- 

posed algorithmic approaches are grouped by technique (from a DM's perspective) and 

key elements of each effort identified in a condensed summary. These results are listed in 

tabular form, allowing for quick access and easy perusal of past research by technique or 

approach characteristic. The classification structure used was first proposed by Horn [152]; 

2-25 



we substantiate and extend its use. This cataloged presentation highlights previously un- 

noticed MOEA research trends, clearly distinguishes the various implemented techniques, 

and identifies distinctive characteristics of each. 

Second, the classification structure and cataloged components allow easy identifica- 

tion of "suitable" MOEA techniques for a given MOP. A high-level discussion describes 

each technique and its mathematical formulation for fitness assignment and/or selection is 

presented. 

Finally, this detailed survey and associated analysis (Appendix A and Chapter III) 

allows interested researchers to quickly construct MOEAs for investigating MOPs. The 

classification structure allows quick identification of a (possibly) effective technique(s), 

EVOPs, and representations. The proposed test suite in Chapter V then allows these 

MOEA's performance to be compared over selected numerical MOPs. 

Freeman Dyson once said, "A good engineer is a person who makes a design that 

works with as few original ideas as possible." This survey and analysis helps an engineer 

hold those original ideas to a minimum for some MOP of interest. Scanning the survey's 

tables may locate similar efforts within some particular problem domain. The tables also 

provide examples in the form of previously used fitness functions and chromosomal repre- 

sentations. In quick order, an engineer is then able to identify and incorporate appropriate 

concepts in a new MOEA instantiation. This reference capability is not available in any 

other MOEA paper. Researchers with basic EA knowledge can use this survey as a largely 

self-contained introduction to MOEAs. 

The review formalizes an algorithmic framework for the important and rapidly ex- 

panding research in MOEAs. This listing is not complete; no matter the effort spent 

collecting and evaluating references any proposed listing from this dynamic research field 

is soon outdated. Although many applications might remain unpublished for confiden- 

tiality reasons we conjecture the reported data is representative of the field's direction(s). 

We now detail the survey's technique classification structure as it is often referred to in 

succeeding chapters. 
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2.6.1 MOE A Classification. Many successful MOEA approaches are predicated 

upon previously implemented mathematical MOP solution techniques. For example, the 

OR field proposed several methods well before 1985 [70,158, 308]. Their Multiple Objective 

Decision Making (MODM) problems are closely related to design MOPs. These problems' 

common characteristics are a set of quantifiable objectives, a set of well-defined constraints, 

and a process of obtaining trade-off information between the stated objectives (and possibly 

also between stated or non-stated non-quantifiable objectives) [158]. 

Various MODM techniques are commonly classified from a DM's point of view (i.e., 

how the DM performs search and decision making). Cohon [69] further distinguishes 

methods between two types of DM: a single DM/group or multiple DMs with conflicting 

decisions. Here we consider the DM to be either a single DM or a group, but a group 

united in its decisions. 

Because the set of solutions a DM is faced with are often "compromises" between the 

multiple objectives some specific compromise choice(s) must be made from the available 

alternatives. Thus, the final MOP solution(s) results from both optimization (by some 

method) and decision processes. We choose to classify MOEA-based MOP solution tech- 

niques as many OR researchers do, defining three variants of the decision process [70, 158] 

where the final solution(s) results from a DM's preferences being made known either before, 

during, or after the optimization process. This is more formally declared as follows [158]: 

A Priori Preference Articulation. {Decide —> Search) DM combines the differing 

objectives into a scalar cost function. This effectively makes the MOP single-objective 

prior to optimization. 

Progressive Preference Articulation. (Search <—► Decide) Decision making and op- 

timization are intertwined. Partial preference information is provided upon which 

optimization occurs, providing an "updated" set of solutions for the decision maker 

to consider. 

A Posteriori Preference Articulation. (Search —> Decide) DM is presented with a 

set of efficient (defined in Section 2.2.1) candidate solutions and chooses from that 

set. 
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Basic techniques below this top level of the MODM hierarchy may be common to 

several algorithmic research fields, however, we limit discussion to implemented MOEA 

techniques. A hierarchy of the known MOEA techniques is shown in Figure 2.13 where 

each is classified by the different ways in which the fitness function and/or selection is 

treated. See Cohon [70] and Duckstein [93] for other multiobjective techniques which may 

be suitable for but have not yet been implemented in MOEAs. 

Existing MOEA Solution Techniques 

A Priori 
(Before) 

Aggregation (Ordering) 

'—   Lexicographic 

Aggregation (Scalarization) 

Linear Fitness Combination 

Nonlinear Fitness Combination 

- Multiplicative 
- Target Vector 
- Minimax 

Progressive 
(During) 

Interactive 

 A Posteriori 
(Generating) 

Independent Sampling 

Cooperative Search 

•   Criterion Selection 

-  Aggregation Selection 
1—   Pareto Selection 

- Ranking 
- Ranking and Niching 
- Demes 
- Elitist 

Hybrid Selection 

Figure 2.13.      MOEA Solution Technique Classification 

2.7   Research Assumptions 

Only one assumption is made a priori, and that involves Pareto optimality. The 

definition of Pareto optimality implies no particular objective can be further optimized 

without worsening another objective (with respect to some function). Thus, the Pareto 

optimal solutions represent optimal compromise solutions. Since it makes no sense (theo- 

retically) to accept a sub-optimal solution we define these solutions (P*) to be the MOP's 

global optimum solution set. That set is the goal of any MOEA algorithm proposed by or 

used in this research. 
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2.8    Summary 

This chapter provides an overview of the problem and algorithm domains focused 

on by this research. MOPs are defined, Pareto concepts introduced, and new theorems 

and definitions offered. An introduction to general search and optimization techniques is 

presented along with a broad overview of both EAs and MOEAs. The literature review 

supporting this effort is described and organized by a new classification structure. Hav- 

ing presented technical definitions and overviews, we now place this effort in context by 

reviewing related MOEA work in the next chapter. 
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III.   MOE A Analysis and Design 

There once was a man who said:  "God 
Must think it exceedingly odd 
If he finds that this tree 
Continues to be 
When there's no one about in the Quad. 

Monsignor Ronald Knox 

Dear Sir, your astonishment's odd. 
I am always about in the Quad. 
And that's why the tree 
Will continue to be 
Since observed by yours faithfully, GOD. 

Anonymous 

3.1    Introduction 

A conference reviewer once called a particular MOEA implementation "straight- 

forward;" it was also evident the reviewer did not completely understand crucial MOP 

domain concepts. Conversations with other MOEA researchers indicate they have encoun- 

tered similar situations. They agree that much time and effort is expended defining and 

defending MOEA concepts in conference and journal submissions, as it seems many EA 

practitioners do not have an adequate understanding of basic MOP issues. We hesitate to 

call any MOEA implementation straightforward, at least as far as achieving effective and 

efficient performance is concerned. 

Appendix A and this chapter together address the many issues involved in MOP 

and MOEA domain integration. A detailed survey is located in Appendix A which math- 

ematically defines known MOEA solution techniques for MOPs. Each citation therein is 

cataloged by recording key elements of its approach, and classified using the structure 

defined in Section 2.6.1. This database currently contains 218 entries representing 272 

separate MOEA-based citations from the literature. 

This chapter presents a quantitative and qualitative analysis of currently known pub- 

lished MOEA research. Many relevant meta-level topics are addressed, highlighting several 

MOEA topics which are treated lightly or even ignored in the literature. For example, we 

discuss MOEA fitness functions, application problem domains, theory, complexity, and 

other selected topics. 
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A quantitative and qualitative analysis of known MOEA research is presented in 

Sections 3.2 and 3.3. Section 3.4 recommends several well-engineered MOEA implementa- 

tions for possible use. Finally, we highlight what we feel to currently be significant MOEA 

research contributions in Section 3.5. 

3.2    MOEA Research Quantitative Analysis 

This section details past MOEA research and is concerned primarily with analyzing 

raw data, while Section 3.3 presents analysis of a more observational nature. We are con- 

cerned in this section with issues such as the number of MOEA research efforts, practicality 

of the various implemented techniques, fitness functions and chromosomal representations 

used in MOEA research, and the problem domains in which MOEAs have been applied. 

This treatment of major MOEA research issues shows the interested practitioner where 

and how the field has focused its energies. 

3.2.1 MOEA Citations. Three graphs quantifying the cataloged citations are 

presented here:1 Figure 3.1 shows the number of citations by year, Figure 3.2 by technique, 

and Figure 3.3 by type. We immediately see that the initial transformations of EAs into 

the multiobjective domain did not spark any real interest for several years (Figure 3.1). We 

also note here that although Schaffer "invented" the first MOEA, Fourman too deserves 

credit for his different MOEA implementations published about the same time. Not until 

the mid 1990's is there a noticeable increase in published MOEA research. However, this 

increase is substantial as almost three times as many MOEA approaches were published in 

the last six years (1994-1999) as in the first ten (1984-1993). The sheer number of recent 

publications indicates an active research community interest in MOEAs. 

As noted in Section 2.6.1, we have classified MOEA approaches into three major 

categories. These categories and the specific techniques they embody are listed below. 

1As noted in Section A.1.2, a few efforts are classified under two MOP techniques reflecting dual ap- 
proaches proposed in the same citation. Additionally, some efforts have multiple citations indicating a 
great deal of duplication between the cited papers. We ignore these minor anomalies and deal here with 
the total number of classified efforts within each technique; the interest is in identifying MOEA research 
trends rather than absolute values. 
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Figure 3.1.     MOEA Citations by Year 

A Priori Techniques: Lexicographic, linear fitness combination, and nonlinear fitness 

combination 

Progressive Techniques: Progressive 

A Posteriori Techniques: Independent sampling, criterion selection, aggregation selec- 

tion, Pareto-based selection, Pareto rank- and niche-based selection, Pareto deme- 

based selection, Pareto elitist-based selection, and hybrid selection 

Comparing citations by technique highlights the popularity of a posteriori techniques 

(Figure 3.2). Over twice as many citations occur in that category as in the a priori and 

progressive categories combined. Does this imply a willingness by DMs to select solutions 

from (possibly) unbiased searches? Or is it that DMs are unwilling (or unable) to assign 

priorities to objectives without further information? At least in real-world problems, it 

seems reasonable for DMs to expend the necessary resources to first perform a search 

for possible solutions. Making a decision a posteriori could well be less expensive in the 

long run than making decisions without the additional knowledge gained through initial 

or interactive search. 
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Application Category 

Figure 3.2.     MOEA Citations by Technique 

When considering the a posteriori techniques, almost twice as many Pareto sampling 

approaches exist as the others combined. The number of papers comparing MOEAs is a 

healthy sign of skepticism, in that researchers are seeking to compare proposed algorithms 

on a variety of problems. 

Note that MOEA theory noticeably lags behind applications, at least in terms of 

published papers. This is even clearer when noting few of these categorized papers (see 

Section A.5.2) concentrate on MOEA theoretical concerns. The others discuss some MOEA 

theory but do so only as regarding various parameters of their respective approaches. 

This quantitative lack of theory is not necessarily bad but indicates further theoretical 

development is necessary to (possibly) increase the effectiveness and efficiency of existing 

MOEAs. Section 3.3.2 discusses many MOEA theoretical issues in detail. 

Finally, Figure 3.3 shows the most popular MOEA implementation by far is a Multi- 

objective Genetic Algorithm (MOGA).2 This is nine times the number of implementations 

2As noted in Section 2.3, the terms EA and EC embody several specific techniques. Figure 3.3 tracks 
the following: Multiobjective Evolutionary Programming (MOEP), Multiobjective Evolutionary Strategies 
(MOES), MOGA, and Multiobjective Genetic Programming (MOGP). 
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Figure 3.3.     MOEA Citations by Type 

as all other types combined. Also, observe that only one MOEP is reported in the litera- 

ture. 

3.2.2 MOEA Technique Discussions. Real estate agents claim three major factors 

set the price one can reasonably expect when buying or selling a home: location, location, 

and location! There is a direct analogy when using MOEAs to solve MOPs. To wit, three 

factors determine the effectiveness and/or efficiency of a particular MOEA: the problem 

domain, the problem domain, and the problem domain! An MOEA should be applied only 

when the problem requires it. A particular problem instance may also determine MOEA 

performance. This is no different than is the case with single-objective EAs but bears 

mentioning. 

Many MOEA implementations are currently available. Selecting an appropriate tech- 

nique and approach is dependent upon meticulous examination of the problem domain; 

ensuring derived solutions are the best available requires careful integration of both prob- 

lem and algorithm domains. Identifying MOEA techniques and approaches which have 

and have not historically "worked" should improve future MOEAs. Thus, this section 

presents general observations about the categorized approaches. General comments about 
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each high-level technique are given and followed by detailed discussions of the approaches 

cataloged within that technique.3 

3.2.2.1 A Priori Techniques. By definition, these techniques require objec- 

tive importance to be defined before search occurs. In real-world scientific and engineering 

problems this is a non-trivial task. The ramifications of "bad" objective prioritization 

choices are easy to see: the DM's "cost" (no matter how defined) could be greater than 

necessary as more "acceptable" solutions are missed. No matter the optimization algo- 

rithm used, this is an inescapable consequence of a priori MOEA techniques, which we 

now examine in detail. 

Lexicographic techniques have not found favor with MOEA researchers, as only two 

implementations are reported. This may be due to the fact this technique explores objective 

space unequally, in the sense that priority is given to solutions performing well in one 

objective over another(s). Or in other words, one objective is optimized at all costs. 

The lexicographic technique appears most suitable only when the importance of each 

objective (in comparison to the others) is clearly known. However, trade-offs do exist. 

On one hand, any reported solutions are Pareto optimal (by definition and with respect 

to all solutions evaluated) and are thus part of the global optimum. On the other hand, 

when is such an "all costs" goal necessary or even appropriate? If one objective is to be 

optimized regardless of the others' expense, it seems more appropriate to instead use a 

single objective EA which does not incur the additional overhead of an MOEA. 

The linear fitness combination technique is a popular approach despite its identified 

shortfalls, probably due to its simplicity. Section A.2.2 reflects its application to many real- 

world scientific and engineering problems where it is often incorporated with "variations 

on a theme." A basic weighted sum MOEA is both easy to understand and implement; 

the fitness combination technique is also computationally efficient. If the problem domain 

is "easy" and a sense of each objective's relative worth is known and can be quantified, or 

even if the time available for search is short, this may be a suitable method to discover 

3The interested reader is referred to Coello Coello [61] for a more complete description and discussion 
of attendant strengths/weaknesses for many of these approaches. 
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an acceptable MOP solution.  However, this technique has a major disadvantage due to 

certain MOP characteristics. 

Fonseca and Fleming [107] explain that for any positive set of weights and fitness 

function $ (see Equation A.6 in Section A.2.2), the returned global optimum is always a 

Pareto optimal solution (with regard to all others identified during search). However, if 

PFirue is nonconvex, optima in that portion of the front can not be found via this method. 

Thus, blindly using this technique guarantees that some solutions in P<nte 
can n°t be found 

when it is applied to certain MOPs. Fonseca and Fleming also state that linear fitness 

combination is the most popular MOEA technique. Figure 3.2 clearly indicates over twice 

as many implemented Pareto-based approaches. Thus, their statement is no longer true. 

Researchers appear leery of applying nonlinear combination techniques. For example, 

of the two cited multiplicative efforts only one reports actually implementing the technique. 

This may be due to the overhead involved in determining appropriate probability of ac- 

ceptance or utility functions, and to the various conditions which these objective functions 

must meet [177]. This additional overhead may not justify resulting solutions' "quality." 

A target vector fitness combination (goal programming) approach is incorporated 

into four MOEAs. If a DM is certain of each objective's desired levels this technique may 

produce acceptable solutions. Just as in all a priori techniques, though, specifying exact 

goals or weights before search may unnecessarily limit the search space and therefore "miss" 

desirable solutions. Algorithmic overhead is minimal when implementing this technique 

because the desired goal levels are directly incorporated into the fitness function. These 

comments also hold true for the cited minimax techniques. Finally, we again find that 

using these techniques to minimize $ does not guarantee resulting solutions are members 

oiPirue  [107]. 

It appears that these ö priori MOEA techniques may be undesirable for general use. 

If a DM is expending resources to search for MOP solutions, it stands to reason optimal 

(or "good") solutions are desired (expected?). Because these techniques arbitrarily limit 

the search space they can not find all solutions in Pirtte •   Additionally, as is shown in 
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Section 3.4, implementing "more" effective and efficient MOEAs might not be as difficult 

and involve less overhead than imagined. 

3.2.2.2 Progressive Techniques. The lack of cited interactive search efforts 

in the MOEA literature is surprising. It seems that no matter what MOP solution tech- 

nique is implemented, close interaction between the DM and "searchers" can only increase 

the efficiency (or "desirability") of discovered solutions. It is understandable that a DM's 

time is at a premium. At least to some level, though, more interaction certainly implies 

"better" results. Although either a priori or a posteriori techniques may be used interac- 

tively, the latter are more suited to MOPs because they offer a set of solutions rather than 

just one. There is a limit to how much information a DM can process at one time, but 

surely some greater number of choices vice one or two is generally more advantageous. 

Incorporating DM preferences within and through an interactive search and decision 

making process may benefit all involved. Do researchers and/or practitioners feel they 

don't have the time? Or is it the DM who balks at the additional effort? Real-world 

applications should surely use this interactive process as the economic implications can be 

quite significant. In fact, several MOEAs [108, 99, 156] are able to explicitly incorporate 

DM preferences within search. 

3.2.2.3 A Posteriori Techniques. As indicated in Section A.4 these tech- 

niques are explicitly seeking Pirue. An MOEA search process is executed with resultant 

solutions and their evaluations (Pknown and PFknown ) provided to the relevant DM. We 

now examine these techniques in detail. 

Several independent sampling approaches are reported but we question their overall 

effectiveness (see Section A.4.1). All cited efforts use some fitness combination technique 

where the weights assigned to each objective are uniformly varied between a number of 

separate MOEA runs. This technique may have limited utility if only two objectives 

are being considered. For example, assume an MOEA using a linear fitness combination 

approach. If each objective's weight varies from 0 to 1 by 0.05 increments, only 21 MOEA 

runs are necessary to explore the possible weight combinations and give some picture 
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of PFj-nown • However, even varying the weights at this coarse resolution results in the 

required number of runs combinatorially increasing with the number of objectives. Thus, 

its overall usefulness seems quite limited especially as the arbitrary weight combinations 

may well prevent discovery of some solutions in Ptrut, and also in view of other techniques' 

strengths. 

Schaffer's Vector Evaluated Genetic Algorithm (VEGA) [289] is an example of a 

criterion selection technique where fractions of succeeding populations are selected based 

on separate objective performance. This is the first time we see an MOEA's population 

capability fully used in that the MOEA returns a number of solutions within a single 

run. However, some criterion techniques are faulted for ignoring solutions performing 

"acceptably" in all dimensions in favor of those performing "well" in only one [152]. 

Crossley et al. [76, 237] believe this technique reduces the diversity of any given 

PFcurrtni (*)• They implement elitist selection to ensure PF^nown (t) endpoints (or in 

other words, PFinown (i)'s extrema) survive between generations, noting that otherwise 

the MOEA converges to a single design rather than maintaining a number of alternatives. 

In other attempts to preserve diversity in PFcurrent (t) they also employ a VEGA variant. 

Here, "^''-branch tournaments (where k is the number of MOP objectives) allow each so- 

lution to compete once in each of k tournaments, where each set of tournaments selects 

1/k of the next population [170]. 

Aggregative selection MOEAs incorporate a variety of techniques to solve MOPs. 

Section A.4.3 shows weighted sums, constraint and objective combinations, and hybrid 

search approaches used. However, rather than using static weight combinations for the 

objectives throughout an MOEA run, the weights are varied between generations and/or 

each function evaluation. Sometimes the weights are assigned randomly, sometimes they 

are functions of the particular solution being evaluated, and in other cases are encoded in 

the chromosome as genes where EVOPs act upon the them also. 

The major advantage of both criterion and aggregation selection techniques is the set 

of solutions returned by each MOEA run. Thus, Pknown and PF\.nown may be reasonable 

approximations to Ptrue and PFirue , and have required only one MOEA run. These meth- 
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ods are not without their disadvantages, however. When using the weighted sum technique 

we know certain members of PFirue may be missed. Both the constraint/objective combi- 

nation and hybrid search approaches have significant overhead (e.g., solving a linear system 

of equations to determine an appropriate hyperplane [356]). Thus, a fitness assignment or 

selection technique able to "easily" find all members of Ptme and PFtrue is desired. Pareto 

sampling offers this capability. 

Almost 90% of reported Pareto-based MOEAs are applied to real-world scientific and 

engineering problems. This certainly implies Pareto techniques are suitable for a number of 

different engineering problem domains. Additionally, rather than the usual two objective 

functions, several Pareto-based approaches used three, four, seven, or more. The Pareto 

methodology handles this increased number of functions easily. 

Figure 3.2 shows the major body of MOEA research centering upon approaches 

exploring "equally" in all objective dimensions (the Pareto sampling techniques). Further- 

more, judging merely by the number of published efforts, more interest is evident in either 

Pareto-based or Pareto rank- and niche-based selection techniques as either has more ci- 

tations than Pareto deme- and elitist based selection. As no direct comparisons have yet 

been made attesting to the efficacy of these various Pareto approaches, this is not to say 

that Pareto deme- or elitist-based selection is not worthwhile. The only existing criticism is 

that Pareto elitist approaches may not retain diverse enough populations to find and retain 

a PFknown truly representative of PFtrue , as they retain only Pcurrent (t) between genera- 

tional populations and discard all other solutions. As more and more population members 

are contained in Pcurrent (*) the remaining solutions may not provide enough diversity for 

effective further exploration. 

The sheer number of Pareto sampling approaches indicates many researchers see 

merit in the basic methodology. As the global optimum of an MOP is PFtrue [325], using 

a Pareto-based approach seems reasonable. However, in order to determine a particular 

MOEA implementation's effectiveness and efficiency, systematic comparison using appro- 

priate metrics on carefully selected test problems should be performed. Although several 

MOEA comparison papers exist this has not yet been accomplished. 
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3.2.2.4 MOEA Comparisons. To date, most MOEA researchers' modus 

operandi is comparing some MOEA (usually the researcher's own new and improved vari- 

ant) against an older MOEA (often VEGA, even with it's identified shortfalls), and an- 

alyzing results for some MOP (often Schaffer's F2 [289] or some other numeric exam- 

ple). Comparative results are then "clearly" shown in graphical form indicating which 

algorithm performed better, implying its returned PFkn0wn is a better representation of 

PFtrue. Only recently (1998) has any researcher proposed experimental methodologies 

for general MOEA comparative analysis [359]; we present an extensive discussion on this 

subject in Chapter VI. To their credit, many of these publications also compare MOEA 

performance on real-world applications. An argument can be made down the lines of "if 

it works, use it," but in general, using a test problem and/or an application's results to 

judge comprehensive MOEA usefulness is not conclusive. 

3.2.2.5 MOEA Theory. Less than l/10t/l of published MOEA papers fo- 

cus on underlying theoretical analyses of MOEAs. These papers focus mainly on MOEA 

parameters, behavior, and concepts. They attempt to further define the nature and lim- 

itations of Pareto optimality, the subsequent effects upon MOEA search, and discuss the 

characteristics and construction of an appropriate MOEA benchmark test function suite. 

Although other MOEA researchers often cite these works, our detailed categorizations show 

their efforts to often be modifications of previously implemented approaches, or perhaps 

the same approach applied to a different application. These papers add little or noth- 

ing to the body of MOEA theory. Fonseca and Fleming [111] and Horn [152] state that 

more effort is being spent designing and refining MOEA approaches than on developing 

accompanying theory. We not only agree with this but have clearly shown it to be a fact. 

3.2.3 MOEA Fitness Functions. The cataloged research efforts provide various 

fitness function types used by MOEAs. Table 3.1 lists several generic fitness function types, 

their identifying characteristics, and examples of each drawn from the MOEA literature. 

These listed types are not limited to MOEA applications nor are they the only ones possi- 

ble. However, MOEAs offer the exciting possibility of simultaneously employing different 
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Table 3.1.     MOEA Fitness Function Types 
Category Characteristic Examples 

Electromagnetic Energy transfer or reflection [220, 225, 328] 
Economic Production growth [137, 297] 
Entropy Information content and (dis)order [112, 183, 274] 
Environmental Environmental benefit or damage [5, 58, 322] 
Financial Direct monetary (or other) cost [16, 156, 330] 
Geometrical Structural relationships [92, 117, 167] 
Physical (Energy) Energy emission or transfer [171, 249, 343] 
Physical (Force) Exerted force or pressure [74, 242, 331] 
Resources Resource levels or usage [21, 90, 297] 
Temporal Timing relationships [108, 163, 297] 

fitness functions to capture desirable characteristics of the problem domain regardless of 

implemented MOEA technique. 

The fitness functions employed appear limited only by the practitioner's imagination 

and particular application; several are identified and others must surely exist. However, 

a fitness function's effectiveness depends on its application in appropriate situations (i.e., 

it measures some relevant feature of the studied problem). The claim by many authors 

that their particular MOEA implementations are successful imply the associated fitness 

functions are appropriate for the given problem domains. 

Finally, the cataloged efforts clearly show the non-commensurability and indepen- 

dence of many fitness function combinations. For example, optimizing a radio antenna 

design may involve electromagnetic (energy transmission), geometric (antenna shape), and 

financial (dollar cost) objectives. The proposed antenna's shape may have no meaningful 

impact on its cost. Also, these objectives may be measured in megawatts, feet, and eu- 

ros! These are the factors responsible for the partial ordering of the search space and the 

subsequent need to develop appropriate MOEA fitness assignment procedures. 

3.2.4 MOEA Chromosomal Representations. Theorems exist [105] showing no 

intrinsic advantage exists in any given genetic representation. For any particular encoding 

and associated cardinality, equivalent evolutionary algorithms (in an input/output sense) 

can be generated for each individual problem instance. Although certain gene representa- 

tions and EVOPs may be more effective and efficient in certain situations, the theorems 
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show that no choice of representation and/or EVOPs operating on one or two parents offers 

any capability which can't be duplicated by another MOEA instantiation. 

The No Free Lunch (NFL) theorems [346] indicate that if an algorithm performs 

"well" (on average) for some problem class then it must do worse on average over the 

remaining problems. In particular, if an algorithm performs better than random search 

on some problem class then it must perform worse than random search on the remaining 

problems. So, although the NFL theorems imply one MOEA may provide "better" results 

than another when applied to some problem these other theorems show that that MOEA 

is not unique. Thus, there appears to be more than one way to skin a cat (or MOP). 

Genetic representation is then another MOEA component limited only by the im- 

plementor's imagination. The cited efforts indicate the most common representation is 

a binary string corresponding to some simple mapping from the problem domain. Real- 

valued chromosomes are also often used in this fashion. And, as in single-objective EAs, 

combinatorial optimization problems often use a permutation ordering of jobs, tasks, etc. 

However, some representations are more intricate and therefore notable. 

Some MOEAs employ arrays as genome constructs. For example, Baita uses a ma- 

trix representation to store recessive information [21] .4 Parks and Chow also use matri- 

ces as these data structures are more natural representations of their respective problem 

domains' decision variables [250, 57]. The Prüfer encoding used by Gen [123] uniquely 

encodes a graph's spanning tree and allows easy repair of any illegal chromosome. In 

the known multiobjective Genetic Programming implementations (e.g., [191, 151, 278]), a 

program/program tree representation is used. No matter the representation employed, we 

again see any claims of "successful" MOEA implementations imply the associated genetic 

encodings are appropriate for the given problem domain. 

3.2.5 MOEA Problem Domains. MOEAs operate on MOPs by definition. A more 

theoretical discussion of the MOP domain is given in Chapter V and elsewhere [327, 83]; 

we here discuss it in more general terms. When implementing an MOEA it is (implicitly) 

assumed that the problem domain (fitness landscape) has been examined, and a decision 

4 As a side note, only two published MOEAs use dominant and recessive genetic information [21, 189]. 
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made that an MOEA technique is the most appropriate solution tool for the given MOP. 

In general, it is accepted that single-objective EAs are useful search algorithms when the 

problem domain is multidimensional (many decision variables), and/or the search space is 

very large. Most cited MOEA problem domains appear to exhibit these characteristics. 

An overwhelming majority of cited efforts are applied to non-pedagogical problems. 

This indicates MOEA practitioners are developing and implementing MOEAs as real-world 

tools. As a quick glance through Appendix A shows, these implementations span several 

disparate scientific and engineering research areas and give credibility to the MOEA's claim 

as an effective and efficient general purpose search tool. 

3.3   MOEA Research Qualitative Analysis 

What differentiates an MOEA from a single-objective EA? What components should 

be included in an MOEA? When should an MOEA be used? This section addresses these 

questions and presents matters of a more philosophical nature raised by the preceding 

discussion, considering several MOEA design issues. Although not quantitatively derived, 

our analytical observations are based on the cataloged presentation in Appendix A and 

substantiated with other relevant citations from the literature. 

3.3.1 MOEA Characteristics. Of course, the major MOEA defining character- 

istic is the set of multiple objectives being simultaneously optimized. Although the cited 

efforts in Sections A.2 through A.4 explain how various MOEAs incorporate these multiple 

objectives, they do not always explain why. This may well be due to a lack of MOEA 

theory. 

3.3.2 MOEA Theoretical Issues. We agree with other MOEA researchers [152, 

111] that MOEA theory is lagging behind MOEA implementations and applications. For 

example, until recently no proof was offered showing an MOEA is capable of converging 

to Ptme or PFtrut (see Section 2.5.2). We show in Figure 3.1 that although the number of 

MOEA implementations is significant, this fact alone does not indicate a corresponding 

depth of associated theory (as reflected by Table A.16 in Section A.5.2).   This research 
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makes absolutely clear that more effort has been spent designing new or variant MOEA 

approaches, and not in comprehensively reviewing the benefits and/or trade-offs of the 

various implementations. 

Why is there such a lack of underlying MOEA theory? Although some mathematical 

foundations exist the current situation seems akin to Goldberg's recent comparisons of 

engineer and algorithmist [127]. He likens algorithms to "conceptual machines" and implies 

computer scientists are hesitant to move forward without exact models precisely describing 

their situation. On the other hand, he claims a design engineer often accepts less accurate 

models in order to build the design. MOEA researchers certainly seem to have taken this 

approach! 

Realizing that simple assumptions are sometimes made in order to develop limited 

theoretical results, the foundations of single-objective EA theory are well-established. The 

Handbook of Evolutionary Computation [19] devotes entire chapters to theoretical EC re- 

sults established during the past 20-30 years. Sample topics include EA types, selection, 

representation, crossover, mutation, fitness landscapes, and so on. Several foundational 

textbooks are also available, such as those by Goldberg [126], Michalewicz [218], and by 

Back [17]. Although much of this theory is (may be?) valid when regarding MOEAs, 

some is not. Thus, this section discusses current knowledge concerning selected MOEA 

theoretical issues. 

3.3.2.1 Fitness Functions. The general manner of fitness function imple- 

mentation is two-fold. This is reflected by the work of Wienke et al. [343] and Fonseca 

and Fleming [112], who each solved MOPs with seven fitness functions. Wienke et al. 

essentially used seven copies of an identical objective function, which was to meet atomic 

emission intensity goals for seven different elements. Although the elements and associated 

goals are each different the fitness functions are conceptually identical. This does not make 

the MOP "easier" but perhaps makes the objective space somewhat easier to understand. 

On the other hand, Fonseca and Fleming's MOP's seven objectives appear both 

incommensurable and independent. Both Pknown and PFknown are hard to visualize, as 

are their interrelationships. For example, when considering the mathematical polynomial 
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Figure 3.4.     MOEA Citations by Fitness Function 

model constructed by their MOEA, it is unclear how the number of terms affects the 

long-term prediction error and how that error may affect variance and model lag. 

With that said, Figure 3.4 shows the number of citations employing a given number of 

fitness functions. The overwhelming majority use only two fitness functions, most probably 

for ease and understanding. Several use three to nine, and the currently known maximum 

is 23 fitness functions within a single MOEA. This approach used an MOEA to solve a 

heavily constrained single-objective optimization problem [62]. Thus, one objective was 

the fitness function and the other 22 were constraints cast as objectives. Of the two 

efforts using 17 objectives, one doesn't specify the specific objectives [260] and the other 

implements conceptually identical objectives [269]. The highest number of conceptually 

different implemented fitness functions is found in a linkage design problem [285] where 

nine objectives are used. 

How many fitness functions are enough? How many objectives are generally required 

to adequately capture an MOP's essential characteristics? Can all characteristics be cap- 

tured? The cataloged efforts imply most real-world MOPs are effectively solved using only 

two or three. There is a practical limit to the maximum number of possible objective func- 
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tions, as the time to compute several complex MOEA fitness functions quickly becomes 

unmanageable. 

A theoretical limit also exists as far as Pareto optimality is concerned. As additional 

objectives are added to an MOP more and more MOEA solutions meet the definition of 

Pareto optimality. Thus, as Fonseca and Fleming indicate for most Pareto MOEAs [111], 

the size of Pcurrent (t), PFcurreni (t), Pknown (*)> and PFknown (*) grows, and Pareto selective 

pressure decreases. However, some confusion results from both their and Horn's [152] 

statements implying that the size of PFtrue grows with additional objectives. We show that 

the Pareto front is composed of Pareto curve(s), Pareto surface(s), or some combination 

of the two (see Section 2.2.2.2). And, as Cantor proved [138], the infinity of points on 

a line, surface, cube, and so on are the same (represented by Ki). Thus, the cardinality 

of PFtrut does not grow with the number of objectives, only (possibly) it's topological 

dimension. However, since MOEAs deal with discretized numerical representations the 

number of possible solutions (and therefore the number of computable vectors composing 

PFknown ) may increase as more objectives are added. 

Finally, some limit to human understanding and comprehension exists. The human 

mind appears to have a limited capacity for simultaneously distinguishing between multiple 

pieces of information or concepts. Perhaps this is best noted by Miller's [222] seminal paper 

proposing a human one-dimensional span of judgment and immediate memory of 7 ± 2. 

He notes that adding objective dimensions increases this capacity but at a decreasing rate. 

This seems to argue a "more the merrier" viewpoint for the number of MOP objectives, but 

visualizing and understanding objective inter-relationships becomes more difficult as their 

numbers grow. Thus, certain techniques are designed to map high-dimensional information 

to two- or three dimensions for better understanding (e.g., Sammon mapping [284] and 

profiles [81]). Fonseca and Fleming [108, 112, 113] often use profiles (or tradeoff graphs) to 

show MOEA solution values and their interrelationships. Figure 3.5 is an example profile 

for an MOP with seven objectives; the lines simply connect each solution's objective values. 

Past MOEA implementation results imply that two or three objectives are "satisfac- 

tory" for most problem domains. Thus, MOEA application to a given MOP should begin 

with two or three primary objectives in an effort to gain problem domain understanding. 
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Figure 3.5.     Example MOP Profile 

One may be able to ascertain how the different objectives affect each other and an idea 

of the fitness landscape's topology. Other fitness functions may then be added in order to 

capture other relevant problem characteristics. Table 3.1 in Section 3.2.3 identifies several 

fitness function categories for this purpose. 

3.3.2.2 Pareto Ranking. Two Pareto fitness assignment methods are pri- 

marily used in MOEAs although variations do exist. In general, all assign preferred (Pareto 

optimal) solutions the same rank and other solutions some higher (less desirable) rank. 

With the scheme proposed by Goldberg [126], where a solution x at generation t has a 

corresponding objective vector xu, and N is the population size, the solution's rank is 

defined by the algorithm in Figure 3.6. 

The second technique, proposed by Fonseca and Fleming [111], operates somewhat 

differently. As before, a solution x at generation t has a corresponding objective vector 

xu. We also let rtf signify the number of vectors associated with the current population 

dominating xu; z's rank is then defined by: 

rank(a;,i) = r, (*) (3.1) 

This ensures all solutions with nondominated vectors receive rank zero. 
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currjrank = I 
m = N 
while N 7* 0 do 

For i = 1 : m do 
If «„ is nondominated 

rank(a:,£) = currjrank 
od 
For i = 1: m do 

If rank(a?,i) = - curr-.ra.nk 
Store x in temporary population 
N = N - 1 

od 
curr-rank = curr .rank + 1 
m- N 

od 

Figure 3.6.     Rank Assignment Algorithm 

Some approaches simply split the population in two, e.g., assigning solutions with 

nondominated vectors rank 1 and all others rank 2 [25]. Using the same notation, this 

ranking scheme is defined by: 

rank(a;,i) = < 
1    if rW = 0 

2    otherwise. 
(3.2) 

When considering Goldberg's and Fonseca and Fleming's ranking schemes, it initially 

appears that neither is "better" than the other, although it is mentioned in the literature 

that Fonseca and Fleming's method, which effectively assigns a cost value to each solution, 

might be easier to mathematically analyze [107]. Horn [152] also notes this ranking can 

determine more ranks (is finer-grained) than Goldberg's (assuming a fixed population size). 

One last ranking method using Pareto optimality as its basis is proposed by Zit- 

zler and Thiele [358].5 Their MOEA implementation uses a secondary population whose 

solutions are directly incorporated into the generational population's fitness assignment 

procedure. Effectively, each Pareto optimal solution (at each generation) is assigned a fit- 

6Their rank assignment algorithm is lengthy. The reader is instead referred to the citation for imple- 
mentation details. 
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ness equal to the proportion of evaluated vectors its associated vector dominates. Because 

of the secondary population's inclusion in the fitness assignment process this method's 

complexity may be significantly higher than the other methods. Additionally, this method 

has a known shortfall. Deb [83] presents a geometric argument that this fitness assignment 

method has inherent bias. Pareto optimal solutions whose associated vectors dominate 

more vectors (or dominate a larger portion of objective space) receive higher fitness than 

other Pareto optimal solutions. However, each Pareto optimal solution should receive equal 

fitness! This method is then biased, as it may result in some Pareto optimal solutions re- 

ceiving preference over others in the selection process. 

There is currently no clear evidence as to the benefit(s) of any of these ranking 

schemes over another. Only one experiment whose purpose is directly comparing any of 

these schemes is reported in the literature. Thomas compared Fonseca and Fleming's and 

Goldberg's Pareto ranking schemes in an MOEA applied to submarine stern design [318]. 

He concludes both outperformed tournament selection, and that Fonseca and Fleming's 

ranking appears to provide a fuller, smoother PFkn0Wn ■ However, he (and we) caution that 

this is a singular data point. On a similar note, only one paper in the MOEA literature 

presents data on the number of population "fronts" using Goldberg's ranking. Vedarajan 

et al. present a graph showing the number of fronts found in each generation [329]. With 

a population size of 300 individuals the first generation has over 40 fronts. This quickly 

drops and from generations 10 to 100 and oscillates between 20 and 25. 

Analyzing these schemes' mathematical complexity is revealing. Table 3.2 (showing 

each scheme's best and worst case) and the following analysis only consider population 

size in computing complexity, where N is the size of the generational population and Ni 

of Pknown • We assume that as comparisons are performed appropriate counter or fitness 

value assignments are made or updated. Thus, the binary, Fonseca and Fleming's, and 

Zitzler's ranking schemes require only one "pass" through the population(s) regardless of 

the number of nondominated solutions. Their worst and best case complexities are identi- 

cal. Goldberg's scheme, however, requires at most N — 1 "passes" through the population 

if there is only one Pareto optimal solution per (reduced) population. In addition, Zitzler's 

scheme's complexity increases if Pknown 's size is much larger than the generational popu- 
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Table 3.2 MOEA Fitness Ranking Complexities 
Technique Best Case Worst Case 

Binary N2-N N2-N 
Fonseca N2-N N2-N 
Goldberg N2-N k(N*-N) 
Zitzler (N + Ni)2 - N - TVi (N + Nrf-N -Nt 

lation's. Thus, Goldberg's and Zitzler and Thiele's ranking schemes (potentially) involve 

significantly more overhead than do the others. 

It is also instructional to look at the possible value ranges for each ranking scheme. 

The binary scheme (Equation 3.2) offers only two values, $ G [0,1]. Both Fonseca and 

Fleming's (Equation 3.1) and Goldberg's scheme (Figure 3.6) offer N possible values, 

$ G [0,1,... , JV — 1]. However, in practice Goldberg's scheme uses some subset of these 

values (resulting in a "coarser" ranking). Zitzler's scheme offers (possibly non-integer) 

values $ G [1,-ZV"). Using Fonseca's second function as an example (see Table B.l in 

Appendix B), Figure 3.7 shows the resultant solution rankings of three Pareto ranking 

schemes. 

Fitness vs. Genotype (Fonseca) Fitness vs. Genotype (Goldberg) 

y-value x-value y-value x-value 

Fitness vs. Genotype (Simple) 

y-value -2   -2 x-value 

Figure 3.7.     Pareto Ranking Schemes 
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Further clouding the issue is the fact that rank itself is often not directly used as a 

solution's fitness. For example, Fonseca and Fleming first used their ranking scheme in 

an MOEA implementation named the MOGA [108]; Srinivas and Deb were first to imple- 

ment Goldberg's scheme in the Nondominated Sorting Genetic Algorithm (NSGA) [306]. 

Both transform assigned rank before selection occurs. The MOGA sorts solutions by rank 

and assigns fitness via linear or exponential interpolation, while the NSGA uses "dummy" 

fitness assignment, ensuring only that each "wave" of Pareto optimal solutions has a max- 

imum fitness smaller than the preceding wave's minimum value.6 

3.3.2.3 Pareto Niching and Fitness Sharing. Several MOEA Pareto niching 

and fitness sharing variants have been proposed with the same goal as in traditional single- 

objective optimization - finding and maintaining multiple optima. However, MOEAs use 

sharing in an attempt to find a uniform (equidistant) distribution of vectors representing 

PFirut, i.e., one in which PFknown 's shape is a "good" approximation of PFtrv,e. We 

compare selected implementations of this concept. 

Fonseca and Fleming's MOGA [114] uses restricted sharing, in the sense that fitness 

sharing occurs only between solutions with identical Pareto rank. They measure niching 

distance in phenotypic space, i.e., the distance (over some norm) between two solutions' 

evaluated fitness vectors is computed and compared to o~sh,are (the key sharing parameter). 

If the distance is less than a share the solution's associated niche count is then adjusted. 

Srinivas and Deb's NSGA [306] implements a slightly different scheme, where distance is 

measured (over some norm) in genotypic space, i.e., the distance between two solutions is 

compared to cs^are. 

Horn and Nafpliotis define niching differently in their MOEA named the Niched 

Pareto Genetic Algorithm (NPGA) [154], which performs selection via binary Pareto dom- 

ination tournaments. Solutions are selected if they dominate both the other and some 

small group (tdom) of randomly selected solutions. However, fitness sharing occurs only in 

the cases where both solutions are (non)dominated. Each of the two solution's niche counts 

6The MOGA and NSGA are used in the experiments discussed in Chapter VI.   Their algorithmic 
implementations are further explained there. 

3-22 



is computed not by summing computed sharing values, but by simply counting the num- 

ber of objective vectors within ashare of their evaluated vectors in phenotype space. The 

solution with a smaller niche count (i.e., fewer phenotypical neighbors) is then selected. 

Horn et al. term this equivalence class sharing [155].7 

Another fitness sharing variant uses the NSGA's rank assignment scheme (i.e., Gold- 

berg's [126] Pareto ranking) but uses phenotypic-based sharing [221]; another combines 

both genotypic and phenotypic distances in determining niche counts [274]. Fitness shar- 

ing may also be applied to solutions regardless of rank instead of restricting sharing between 

equally ranked solutions. 

All of these methods require setting explicit values for the key sharing parameter 

oshare, which can affect both MOEA efficiency and effectiveness. Fitness sharing's perfor- 

mance is also sensitive to the population size N. Assigning appropriate values to crshare is 

difficult as it usually requires some a priori knowledge about the shape and separation of a 

given problem's niches. However, as phenotypic-based niching attempts to obtain equidis- 

tantly spaced vectors along PFkn0Wn , both Fonseca and Fleming [114] and Horn [154] are 

able to give guidelines for determining appropriate MOEA ashare values. These values are 

based on known phenotypical extremes (minimum and maximum) in each objective dimen- 

sion.   Horn also suggests appropriate values for the NPGA's tournament size parameter 

(tdom )• 

To determine crshare 's value using Fonseca and Fleming's method, one uses the num- 

ber of individuals in the population (which implicitly determines the number of niches), 

scales the known attribute values, and determines the extreme attribute values in each 

objective dimension. These parameters are then used to derive oshare • Horn's guidelines 

use the above parameters to define bounds for ashare 's value. 

How does one find each objective dimension's extreme values? One suggested ap- 

proach is by computing objective values using each decision variables' minimum and max- 

imum value. This is not feasible because decision variable extremums may not correspond 

to attribute extremums; the combinatorics and unknown relationships between different 

7The NPGA is used in the experiments discussed in Chapter VI.   Its algorithmic implementation is 
further explained there. 
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decision variable values is an additional factor. Thus, the minimum and maximum values of 

either the generational or a secondary population may be used. Fonseca and Fleming [114] 

indicate recomputing Gsha,re at each generation (using current generational extremums) 

yields good results. We also note that the MOEA's stochastic nature may not preserve 

these values between generations, i.e., the associated solutions may not survive. Thus, it 

is better to select objective extremes from the secondary population if one is incorporated 

in the MOEA. By definition, this population contains each objective dimension's extrema 

so far, ensuring the "ends" of PFinown are not lost. 

As with the proposed Pareto ranking schemes, there is then no clear evidence as to 

the benefit(s) of one Pareto niching and sharing variant over another. Nor are experiments 

reported in the literature comparing key components of these different approaches (e.g., 

o'share value assignment). 

We note the following in regard to the appropriate sharing domain. Horn et al. indi- 

cate sharing should be performed in a space we "care more about" [154, 155]. Phenotypic- 

based sharing does make sense if one is attempting to obtain a "uniform" representation of 

PFtrue . On the other hand, Benson and Sayin indicate many OR researchers "care more 

about" obtaining a "uniform" representation of Pirue [28], in which case genotypic-based 

sharing seems appropriate. The end representation goal should drive the sharing domain. 

3.3.2.4    Mating Restriction. The idea of restricted mating is not new. 

Goldberg [126] first mentions its use in single-objective optimization problems to prevent 

or minimize "low-performance offspring (lethals)." In other words, restricted mating biases 

how solutions are paired for recombination in the hopes of increasing algorithm effective- 

ness and efficiency. Goldberg presented an example using genotypic-based similarity as the 

mating criteria. Deb and Goldberg [86] implemented phenotypic-based restricted mating 

in their GA niching and sharing investigation. We note here these implementations only 

allow mating between "similar" solutions (over some metric). Island model GAs also imple- 

ment restricted mating but in a geographic sense where solutions mate only with neighbors 

residing within some restricted topology [46]. It is also noted [61] that other researchers 

believe restricted mating should allow recombination of dissimilar (over some metric) indi- 
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viduals to prevent lethals. However defined, restricted mating is also incorporated within 

many MOEAs in an attempt to reduce unfit (e.g., non-Pareto optimal) offspring. 

For example, Baita et al. [21], and Loughlin and Ranjithan [205], place solutions on 

a grid and restrict the area within which each solution may mate. Lis and Eiben [201] 

allow mating only between solutions of different "sexes." Jakob et al. [167] restrict mating 

to solutions within a particular deme. Hajela and Lin [140] implement a unique form of 

mating restriction. In their linear fitness combination (weighted-sum) MOEA formulation, 

they apply restricted mating based on a solution's associated weighting variables to prevent 

crossover between designs with radically different weight combinations. When considering 

general MOEAs phenotypic-based restricted mating between similar solutions is of more 

interest to us. Several MOEA researchers state in their published reports [108, 109, 359]: 

"Following the common practice of setting amait = ashare •••" 

This may be a common practice, but no background is cited in the literature. As 

& share attempts to define a region within which all vectors are "related," setting amate equal 

to crshare is intuitive. The same rationale holds in genotypic sharing and mating restriction. 

We currently have only empirical explanations offered for the implementation (or lack) of 

restricted mating in various MOEA approaches. In fact, it was recently noted [111] that 

"... the use of mating restriction in multiobjective EAs does not appear to be widespread." 

Obviously, some researchers believe restricted mating is necessary or they would not have 

implemented it, but others indicate it is of no value! 

Zitzler and Thiele [359] state that for several different values of <Jmate» no improve- 

ments were noted in their test problem results (an MOP with two - four objectives) when 

compared against those with no mating restriction. Shaw and Fleming [297] report the 

same qualitative results for their application (an MOP with three objectives) whether or 

not mating restriction was incorporated. Horn et al. [155] offer empirical evidence directly 

contradicting the basis for mating restriction. They note that recombining solutions whose 

associated vectors are on different portions of PF^nown (t) can produce offspring whose vec- 

tors are on PFknown (t + 1) but between their parents. They also claim that for a specific 

MOP a constant (re)generation of vectors through recombination of "dissimilar" parents 
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maintains PFknown ■   They believe most recombinations of solutions in Pknown also yield 

Solutions in Pknown ■ 

Thus, as in single-objective optimization, no clear quantitative evidence regarding 

restricted mating's benefits exists. The empirical evidence presented in the literature can 

be interpreted as an argument either for or against this type of recombination and leaves the 

MOEA field in an unsatisfactory predicament. This issue clearly benefits from experiments 

directly comparing its algorithmic inclusion/exclusion. One must also consider the NFL 

theorems [346], realizing that mating restriction may not always be effective (or needed) 

for every problem (class). 

3.3.2.5 Solution Stability and Robustness. Both EAs and MOEAs search 

for some problem's optima. At least for MOPs, it has been noted [160] that Ptrue may not, 

and often is not, the most desirable solution set because its members are "unstable" (e.g., 

due to engineering tolerances, nonlinear response). It is also suggested that these solutions 

are often on the "edge" of optimality and/or feasibility. Thus, just as in single-objective 

optimization, any solutions returned as optimal must be evaluated with respect to any 

constraints not explicitly considered in the objective function(s). Or, perhaps a suitably 

defined sensitivity objective (e.g., engineering tolerances) may be incorporated into the 

MOEA. 

3.3.3 MOEA Secondary Populations. We agree with Horn [152] that any practi- 

cal MOEA implementation must include a secondary population composed of all nondom- 

inated solutions found so far (Pknown (<))• This is due to the MOEA's stochastic nature 

which does not guarantee that desirable solutions, once found, remain in the generational 

population until MOEA termination. This is analogous to elitism but we stress that it is a 

separate population. The question is then how to best utilize this additional population. Is 

it simply a repository, continually added to and periodically culled of dominated solutions? 

Or is it an integrated component of the MOEA? Although several researchers indicate their 

use of secondary populations only a few explain its use in their implementation. As there 

is no consensus for its "best" use we present some of its incarnations. 
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A straightforward implementation stores Pc%rreni (*) at the end of each MOEA gen- 

eration (i.e., Pcurrent (t) U Pknown (t — 1)). This set must be periodically culled since a 

solution's designation as Pareto optimal is always dependent upon the set within which 

it is evaluated. How often the population is updated is generally a matter of choice, but 

as determination of Pareto optimality is an ö(n2) algorithm, it should probably not be 

performed arbitrarily. As this population's size grows comparison time may become signif- 

icant. This implementation does not feed solutions from Pknown (t) back into the MOEA's 

generational population. 

Conversely, other published algorithms actively involve Pknown in MOEA operation. 

For example, Zitzler and Thiele's [358] Strength Pareto Evolutionary Algorithm (SPEA) 

stores Pcurreni (*) in a secondary population and then culls dominated solutions. Solutions 

from both the MOEA's generational and secondary populations then participate in binary 

tournaments selecting the next generation. If the number of solutions in Pknown (t) exceeds 

a given maximum, the population is reduced by clustering which attempts to generate a 

representative solution subset while maintaining the original set's (Pknown (*)'s) character- 

istics. SPEA also uses Pknown (t) in computing the main population's solutions' fitness; 

this effectively results in a larger generational population. 

Todd and Sen [319] also insert nondominated solutions from Pknown (*) into the mat- 

ing population to maintain diversity, as do Ishibuchi and Murata [163, 165, 164], and 

Cieniawski et a!. [58]. These implementations never reduce the size of Pknown (t) except 

when removing dominated solutions. Parks and Miller [249] and Parks [250, 248] imple- 

ment an archive of Pareto optimal solutions. However, solutions in PCurrent (*) are not 

always archived; the process occurs only if a solution is sufficiently "dissimilar" from those 

already resident. Thus, this also is clustering. If a new solution is added any archive mem- 

bers no longer Pareto optimal are removed. Like SPEA, the next generation's members 

are selected from both Pknown (t) and the current generational population. 

Some researchers use secondary populations not composed of Pareto optimal solu- 

tions. Bhanu and Lee [32] apply an MOEA to adaptive image segmentation; their sec- 

ondary population is actually a training database from which GA population members are 

selected.   Viennet et al. [334] use separate GAs to optimize each of the MOP's k func- 
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tions independently; these "additional" populations are later combined and nondominated 

solutions removed to provide Pknown • 

A secondary population (of some sort) is an MOEA necessity. Because the MOEA 

is attempting to build up a (discrete) picture of a (possibly continuous) Pareto front, this 

is probably a case where at least initially, too many solutions are better than too few. 

It intuitively seems that a secondary population might also be useful in adding diversity 

to the current generation and in exploring "holes" in the known front, although how to 

effectively and efficiently use Pknown in this way is unknown. Again, we suggest experiments 

directly comparing various secondary population implementations. 

3.3-4 MOEA Complexity. It is well known that fitness function evaluation (for 

many real-world problems) dominates EA execution time. Thus, when discussing various 

MOEAs' algorithmic complexity we are concerned mainly about the number of fitness 

evaluations. We do consider solution comparisons and additional calculations, as this 

overhead is not found in simple GA (SGA) implementations. EVOP complexity is ignored 

for the current purpose. 

MOEA complexity is generally greater than that of SGAs. After fitness evaluation in 

an SGA, resultant values are stored in memory and no further computation is (normally) 

required as far as fitness is concerned. However, an MOEA sometimes combines and/or 

compares these stored values which adds algorithmic complexity. As a reference we present 

the complexity of the various MOEA techniques in Table 3.3; SGA complexity is included 

for comparison. Each technique's "worst-case" was used to generate these figures. 

The table's notation is as follows. Population size is denoted by n and the number 

of generations by G. Tj represents fitness computation time (assumed here to be equal 

for each objective). The number of fitness functions is designated by k and the number 

of solutions per processor (the Pareto demes case) by m. All table entries are based upon 

a single generational population, i.e., no secondary populations are used. All techniques 

are assumed to store a solution's evaluated fitness making selection's computational cost 

inconsequential. All listed techniques have the identical basic cost of TjGnk fitness com- 

putations.  Finally, independent sampling's complexity was computed using several runs 
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Table 3.3.     MOEA Solution Technique Complexity 
MOEA Technique Computational Complexity 

SGA TfGn 
Lexicographic TfGnk + Gn2k - Gnk 
Linear Combination TjGnk + Gnk - Gn 
Multiplicative TfGnk + Gnk - Gn 
Target Vector TfGnk + Gk2 + 2Gk 
Minimax TfGnk + 3Gnk 
Independent Sampling c[TfGnk + Gnk - Gn] 
Criterion Selection TfGnk + Gn 
Aggregation Selection TfGnk + Gnk - n 
Pareto Rank TfGnk + Gn2k - Gnk 
Pareto Niche and Share TfGnk + Gn2k - Gnk + n2 

Pareto Demes TfGnk + G^ - G^ + fTcomm 

Pareto Elitist TfGnk + Gnlk - Gnk 

of a linear fitness combination technique. Randomly assigned weights (in the fitness func- 

tions) were used for the aggregation technique's complexity determination. Table 3.3 shows 

MOEA techniques explicitly incorporating Pareto concepts are the most computationally 

expensive; this is due primarily to the ö(n2) cost of determining which solutions in some 

set are Pareto optimal. 

MOEA storage requirements are problem dependent. Like other EAs these require- 

ments are mandated by the specific data structures used. Required storage increases 

linearly with the number of fitness functions used, and when a secondary population is 

brought into play. 

We note here that MOEA complexity may be a moot issue in real-world applica- 

tions. As fitness function evaluation (for many real-world problems) dominates EA execu- 

tion time, the overhead involved in any of the presented techniques may be miniscule in 

comparison. If that is the case the complexity issue "goes away" as long as the technique 

appears effective and efficient. 

3.3.5 MOEA Computational "Cost". When practically considered, MOP evalu- 

ation cost limits MOEA search. The most "expensive" EA component in many real-world 

MOPs is the fitness function evaluation. Since all algorithms must eventually terminate 
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the number of fitness evaluations is then often selected as the finite resource expended in 

search, i.e., the choice is made a priori for an EA to execute n fitness evaluations. The 

"best" solution found is then returned. Assuming solutions are not evaluated more than 

once (no clones) a total of n points (possible solutions) in the search space are explored. 

Now consider a fc-objective function. Here, k fitness evaluations are performed for 

each possible solution (one for each objective). Assuming resources are still limited to 

n fitness evaluations and that each objective evaluation is equally "expensive", only |_f J 

points in the search space are now explored. All else held equal, a fc-objective optimization 

problem may then result in a &-fold decrease in search space exploration. Note also that in 

the context of MOEAs, this implies using the term "fitness function evaluations" to measure 

computational effort may be somewhat misleading. The term "solution evaluations" is 

clearer. 

This result implies an MOEA may require longer (than a single-objective EA) "wall 

clock" execution times for good performance. Further search is never guaranteed to return 

the optimal answer but one wishes as much exploration as possible in the time allowed. 

This increases the sense of confidence one has found the true, and not a local, optimum. 

3.8.6 MOEA Parallelization. We have noted several parallel MOEA implemen- 

tations [3, 21, 167, 210, 256, 274]. These implementations execute either several MOEAs 

on different processors (several independent, synchronous runs) or spread an MOEA's pop- 

ulation among processors in a demic manner (i.e., a "master-slave" or island model [46]). 

However, none discuss what other parallel MOEA possibilities exist or what MOEA tech- 

nique modifications may be required when implemented in parallel. 

An obvious first choice for MOEA parallelization is an exact task to processor map- 

ping, but this is not a wise choice. Each identified task in Figure 2.12 (Section 2.5) executes 

for varying time periods. Additionally, Task 1 executes only once. It is easy to see this 

proposed mapping's inefficiency. One processor completes its task and then sits idle. The 

other processors are also unable to operate asynchronously resulting in a much greater idle 

than calculation time. 
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The four steps in the execution loop must occur sequentially. Mutation cannot op- 

erate until recombination finishes. Selection does not (normally) occur until all fitnesses 

are computed. It is conceivable that the fitness evaluation task can operate on solutions 

sent immediately after mutation does/does not occur, but the overhead of opening/closing 

a communication channel between two processors seems prohibitively expensive compared 

to the minimal computational gains. Additionally, since data required by each task is res- 

ident on other processors there is an additional communication overhead associated with 

this implementation. We thus draw the conclusion that this implementation is not useful. 

"Pipelining" the algorithm's tasks is also ineffective because it is a special case of the exact 

task to processor mapping. 

Another possibility is a Single Program Multiple Data (SPMD) implementation. One 

may execute several MOEAs simultaneously on different processors and compare, contrast, 

and/or combine the reported results. As executing a number of MOEAs sequentially 

achieves this same result the parallel implementation has obvious speedup. However, we 

also wish to consider parallelizing innate MOEA tasks. 

3.3.6.1 MOEA Decomposition. Affecting the ability to effectively and effi- 

ciently parallelize an MOEA is the fact it is inherently sequential. By definition, Task 2 

(Figure 2.12 in Section 2.5) in the MOEA case computes k (k > 2) fitness functions. This 

task can and has been parallelized. 

MOEA fitness function evaluation allows for parallelism by assigning each function's 

evaluation to different processors, assigning subpopulations for evaluation on different pro- 

cessors, or assigning each individual's evaluation across several processors. These options 

are shown in Figure 3.8; each is discussed in turn. 

Each fitness function's execution time may be radically different. Blindly assign- 

ing the entire population and each of the k functions to a different processor may then 

be imprudent if one fitness evaluation takes many times longer than the others (see Fig- 

ure 3.8a). One could load balance these fitness computations but the effort expended may 

not be worthwhile. It is also possible to assign fractions of the population to different 

processors where identical numbers of individuals are evaluated via identical fitness func- 
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Figure 3.8.     Parallel Fitness Evaluation Possibilities 

tions (see Figure 3.8b). As long as communication time is not a significant fraction of 

each subpopulation's calculation time, this is an effective parallelization method for fitness 

evaluation. Jones et al. [170] use a "master-slave", dynamic load-balancing approach to 

distribute fitness evaluations in this manner. Finally, in the case of an extremely expensive 

fitness computation(s) each individual's evaluation(s) could be split among processors (see 

Figure 3.8c). This is most likely in problem domains such as computational electromag- 

netics or fluid dynamics where such parallel codes already exist. 

Additional processing is sometimes required to transform the resultant fitness vectors 

into scalars. Several variants of MOEA fitness assignment and selection techniques exist 

(e.g., ordering, scalarization, independent sampling, and cooperative search) which may or 

may not be parallelizable. For instance, using a Pareto ranking and niching implementation 

such as Fonseca and Fleming's MOGA [108] permits the Pareto ranking and shared fitness 

calculations to be performed independently. As each are ü(n2) algorithms overall MOEA 

speedup is possible. 

Figure 3.9 shows a parallel MOEA's task decomposition. One processor acts as the 

MOEA "master," executing the population initialization, recombination, mutation, and 

selection tasks. It also controls parallelization of the fitness evaluation/transformation 

tasks performed by the "slaves," easily implemented via communication libraries such as 

the Message Passing Interface (MPI) [247]. MPI includes communication routines that are 

readily incorporated into MOEA implementations, and are portable across a wide variety of 
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computer architectures with either homogeneous or heterogeneous processors. The master 

processor may or may not perform fitness calculations depending on the particular problem. 

3.3.6.2 Parallel MOEA Issues. Taken as a whole, a parallel MOEA is not 

a complex algorithm. Represented as a Directed Acyclic Graph (DAG) MOEA tasks show 

more precedence relationships than asynchrony. In other words, the parallel MOEA has a 

large grain size; algorithmic decomposability is rapidly reaching its limit. 

Instantiated parallel MOEAs may well benefit from applying one of the many avail- 

able static or dynamic processor scheduling and load balancing techniques [97, 185]. As 

parallel MOEAs are applied to real-world scientific and engineering problems where the 

fitness calculation time is significant, these scheduling heuristics become more important. 

However, since the overwhelming amount of many MOEA computational efforts is spent 

on fitness calculation, parallelizing fitness assignment and selection may not result in large 

gains. The overhead involved could in fact be "more trouble than it's worth." 

In broad terms, any parallel MOEA implementation should result in some speedup 

gains. Additionally, it offers the possibility of evaluating more candidate solutions perhaps 

providing a "better" view of the fitness landscape. 

3.4    MOEA Design Recommendations 

The tables in Sections A.2-A.4 present numerous approaches. When considering 

them those wishing to implement an MOEA may well be asking, "Where do I begin?" We 

cannot specify an "all purpose" MOEA technique nor do the NFL theorems [346] allow 

for one. However, we can suggest MOEAs which appear appropriate as a starting point. 

3-33 



Interested researchers may then select one of these MOEAs to begin their exploration of 

the MOP domain. 

Definition 8 states that an MOP's global optimum is PFtrue, determined by eval- 

uating each member of Ptrue ■ Additionally noted in Section A.4 is the fact that many 

a posteriori approaches explicitly seek Ptne. Thus, a priori techniques are not generally 

appropriate because they may not be capable of finding each member of Ptrue > and they 

return only a single solution per MOEA run. The DM's lack of information before search 

occurs is also a factor. 

Although there are several a posteriori techniques to consider8 we focus on those 

MOEAs employing Pareto rank- and niche-based selection, and specifically consider Fon- 

seca and Fleming's MOGA [114], the NPGA [154], and the NSGA [306]. The citations 

give ample information to implement these algorithms. 

These algorithms stand out because they incorporate known MOEA theory. The 

Pareto-based selection each employs explicitly seeks Ptrue • All incorporate niching and 

fitness sharing in an attempt to uniformly sample PFtrue . Mating restriction may (or may 

not) be included in any of the three, as may a secondary population. Finally, their general 

algorithmic complexity is no higher than other known MOEA techniques. 

Although each MOEA's authors (and rightly so) point out deficiencies in their own 

and other MOEAs, any algorithmic approach is bound to have some shortfalls when applied 

to certain problem classes (c.f., the NFL theorems [346]). These algorithms' common theme 

is their respect of known relevant theoretical issues, and their empirical success in both 

(non-)numeric MOPs and real-world applications. Appendix A shows these algorithms 

easily win the title "Most Often Imitated," implying other researchers also see value in 

them. As these MOEAs are used in experiments supporting this research we present 

detailed information about each in Sections 6.3.2 and 6.3.3. They are briefly described 

here. 

8 Progressive approaches incorporate either a priori or a posteriori techniques; any of the algorithms we 
recommend may be used interactively. 
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1. MOGA. Implemented by Fonseca and Fleming [114]. Used to explore incorporation 

of DM goals and priorities in the multiobjective search process. Employs the Pareto 

ranking scheme in Equation 3.1 (Section 3.3.2.2) and fitness sharing. 

2. NPGA. Implemented by Horn et al. [154]. Used to explore benefits of providing 

Pknown as input to a Multi Attribute Utility Analysis [177] process. Uses tournament 

selection based on Pareto optimality instead of fitness assignment based on Pareto 

optimality. Incorporates fitness sharing. 

3. NSGA. Implemented by Srinivas and Deb [306]. Employs Goldberg's Pareto rank- 

ing [126] as shown in Figure 3.6 (Section 3.3.2.2). This MOEA attempts to prevent 

bias towards certain regions of the Pareto front and incorporates fitness sharing. 

Although not straightforward, many existing EA implementations are extendable into 

the MOEA domain. For example, GENOCOP III [217] was readily modified to incorporate 

both a specialized problem domain code and linear fitness combination technique. The 

Genetic and Evolutionary Algorithm Toolbox (GEATbx) for use with MATLAEP [255] 

allowed us to quickly create both MOGA and NSGA variants; these codes are now being 

incorporated into the toolbox's baseline version. Upon request, other researchers have also 

provided their MOEA code for experimentation. Thus, initial algorithmic development 

should not be a barrier to solving MOPs with MOEAs. 

3.5    MOEA Research Contributions 

This chapter's analysis and the cataloged research in Appendix A provide a pool from 

which to award "MOEA Oscars" for significant and original MOEA research contributions. 

These awards are (of course) subjective. 

Schaffer and Fourman must be recognized for their pioneering MOEA work [289,117]. 

Figure 3.1 (Section 3.2.1) shows very few MOEA publications during the next six years. 

Goldberg deserves mention for noticing that the concept of Pareto optimality might be 

used to rank solutions in MOEAs [126:pg.   201].   As Deb notes [84], varying MOEA 

9MATLAB is a Trademark of The MathWorks, Inc. 
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interpretations and implementations of Goldberg's "10-line sketch" have proved at least 

equal to classical approaches in many cases. 

Fonseca and Fleming were the first to publish an MOEA research survey [111]. They 

broadly classified and critiqued known approaches presenting a solid explanation of key 

MOEA theoretical aspects (e.g., fitness assignment and sharing). This survey and Gold- 

berg's book [126] are probably the most cited documents in MOEA publications. Their 

MOGA was one of the first Pareto-based MOEAs explicitly used to seek PFtrue and the 

first to mention active DM involvement. Horn later published an updated survey [152] 

with a different classification structure recognizing that many implemented MOEA tech- 

niques originated in the OR field. His and Nafpliotis' NPGA [154], and Srinivas' and 

Deb's NSGA [306] are two other Pareto-based MOEAs built on solid theoretical results. 

We note our MOEA classification and technique analysis (see Appendix A) is generally 

more complete and up-to-date than these other surveys. 

Finally, awards must be given for MOEA theory development. Three researchers 

deserve mention here. Rudolph brings a rigorous mathematical approach to the important 

issue of MOEA convergence [275, 276]. Deb realizes the lack of capability to construct 

MOPs with desired characteristics and analytical solutions for PFtrue [83]. Finally, we 

also recognize the need for additional MOEA theory, a substantiated MOEA test function 

suite, and a methodology with which to quantitatively compare MOEA performance [327] 

(also see Chapters II, V and VI). 

3.6    Summary 

This chapter presents an in-depth analysis of MOEA research, discussing in detail 

several foundational issues such as implemented MOEA techniques and fitness functions, 

chromosomal representations, and application areas. More general observations are also 

made concerning MOEA characteristics and components. Theoretical issues relating to 

MOEA complexity and parallelization are discussed. 

This analysis identifies appropriate MOEAs recommended for initial use in solving 

MOPs, and should be used when re-engineering these (or any other) MOEAs to solve 
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particular MOPs. The chapter concludes by highlighting several significant MOEA research 

contributions. As a whole, this analysis and Appendix A serve as a guide to MOEA design. 

With this background and insight into the MOEA design process a new algorithm design 

is discussed and implemented in the next chapter. 
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IV.   Building Blocks and MOEA Design 

A good scientist is a person with original ideas. A good engineer is a person who makes 
a design that works with as few original ideas as possible. There are no prima donnas in 
engineering. 

Freeman Dyson, Disturbing the Universe 

4-1    Introduction 

A primary thesis of this research is that Building Blocks (BBs) can be successfully 

employed in solving MOPs. This view was until now unexplored. In keeping with the above 

quote we first review relevant single-objective BB concepts and then extend appropriate 

ones to the MOP domain. Based on these results, an existing single-objective GA which 

explicitly manipulates BBs is made the basis for a new, innovative MOEA. 

Section 4.2 gives an overview of BB concepts. A brief history of BB-based GAs is 

presented in Section 4.3 and Section 4.4 discusses the relationship between BBs and MOPs. 

Finally, Section 4.5 presents a "new" multiobjective EA (called the MOMGA) based on the 

explicit BB manipulation performed by the messy GA. Section 4.6 proposes a concurrent 

MOMGA implementation. 

4-2    GA Building Block Overview 

Theoretical GA performance analysis makes extensive use of schemata (singular: 

schema), or similarity templates.1 A schema is a character string; its characters are drawn 

from some specified genetic alphabet also containing a "don't care" character (*). Since 

solutions are encoded as strings a schema thereby describes a subset of potential solutions. 

For example, the schema 1** represents the set of all 3-bit binary strings containing a 1 in 

the first position, i.e., 1** = {100, 101, 110, 111}. Likewise, the schema 1*0 represents the 

set of all 3-bit binary strings beginning with a 1 and ending with a 0, i.e., 1*0 = {100,110}. 

1This overview makes use of the concepts presented in Section 2.4. 
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The defining length (0(H)) of a schema H is the "distance" between the index of the 

first and last specified positions. For example, <5(l*****0*) = 7 — 1 = 6 and 8(1*******) = 

1 — 1 = 0. The order (o(H)) of a schema H is the number of its specified positions. For 

example, o(l*******) = 1 and o(llllllll) = 8. 

These concepts provide a basis for discussing the Fundamental Theorem of Genetic 

Algorithms, also known as the Schema Theorem. Defining the average fitness of the strings 

matching some schema H as f(H), the average population fitness as /, and the num- 

ber of strings matching the schema contained in a population at time t as m(H,t), the 

reproduction operator's effect (assuming fitness proportional selection) is 

m(H,t + l) = m(H,t)^p-. (4.1) 

Two types of EVOPs can disrupt schema present in the population as the GA ex- 

ecutes. Single-point crossover disrupts a schema only when the crossover point occurs 

within the defining length of the schema. Thus, the probability of survival under single- 

point crossover for some schema in a string of length I is 

HH) ,     , 
Ps>l-Pcy—{, (4.2) 

where pc is the probability of crossover. The inequality reflects the fact that crossover 

may not actually disrupt the schema even when the crossover point is within the defining 

length. 

Point mutation also disrupts a schema only when occurring within the schema's 

defining length. The probability of survival for the same schema under the point mutation 

operator is 

pms « 1 - o(H)pm, pm < 1 , (4.3) 
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where pm is the probability of mutation. Combining these results and omitting negligi- 

ble terms gives an estimate for the expected number of schema remaining in the next 

generation: 

m(H,t+l)>m(H,t)^S- 1-Pcy^-oWft, (4.4) 

Goldberg states this result implies "short, low-order, above-average schemata receive 

exponentially increasing trials in subsequent generations" [126]. These highly fit schemata 

are also referred to as BBs. Goldberg also postulates a Building Block Hypothesis: 

Short, low-order, and highly fit schemata are sampled, recombined, and resam- 
pled to form strings of potentially higher fitness. 

BB concepts are also valid when viewed in light of real-valued EAs. Instead of an 

/-bit binary string assume m real-valued parameters. Given that parameter p,-'s range is 

h < Pi < «!» and thus a parameter space V defined by V = IliüLi&'j^«]? Wright defines a 

real-valued schema S by: 

S£[ai,ßi], (4.5) 

where U < an < /?,• < U{ [347].   He then shows the Schema Theorem also holds when 

real-valued BBs are considered. 

In general, EAs implicitly focus search around BBs whose role is defined by the 

Schema Theorem. BBs are a GA's "information" source where each has two major compo- 

nents: each bit (or parameter) has some specified value(s) and each is somehow dependent 

upon the others {linkage). BBs define chromosomes associated with high fitness and are 

used by GAs in three primary ways. First, an initial supply of BBs is provided via the 

starting population and used in defining individual fitness. Second, selection should cause 

an increase in the number of desired BBs by selecting individuals containing them for 

inclusion in the next generation.  Finally, BBs are mixed via recombination, attempting 
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to assemble the best BBs into a single individual. In each generation, GAs use these two 

EVOPs in an attempt to exploit the BBs present in their populations.2 

4-3   Building Block-Based GAs 

If true, the Building Block hypothesis means BBs are an important GA component. 

Few research efforts take steps to explicitly incorporate BB manipulation into GA opera- 

tion. When considering ones that do, Goldberg et al.'s [130, 129] messy GA (mGA) and 

fast messy GA (fmGA) [128] are of special interest here. 

4-3.1 mGA and fmGA. Goldberg et a!. [130] believe too much attention is paid 

to "neat" GA genotype codings. They propose a coding scheme where genotypes can 

exhibit redundancy, over- and under- specification, and changing structure and length. 

They believe this GA modification forms tighter and more useful BBs than those formed 

by standard GAs. The resultant mGA proved successful in optimizing deceptive functions; 

these functions mislead GA search toward some local optimum when the global optimum 

actually lies elsewhere [130]. The mGA's pseudocode is shown in Figure 4.1. 

As shown, the mGA initializes a population of BBs via a deterministic process called 

Partially Enumerative Initialization (PEI), producing all possible BBs of a specified size. 

This population size is governed by the equation 

N = Ck(lY (4.6) 

where N is the resulting population's size, C the allelic alphabet's cardinality, I the chro- 

mosomal length (in bits), and k the problems assumed BB size. Thus, for a 240-bit (binary) 

chromosome with k = 3, the initial population size is 18,202,240. It is easily seen that 

population size grows exponentially with increasing k. These BBs' fitness is evaluated with 

respect to a competitive template used to fill in values of under-specified positions. 

2 Based upon a mutation probability much less than one, and a BB of any size, it is highly unlikely for 
BBs to be constructed via mutation. Mutation is thus considered more of an exploratory EVOP. 
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For n = 1 to k 
Perform Partially Enumerative Initialization 
Evaluate Each Population Member's Fitness (w.r.t. Template) 

// Primordial Phase 
For i = 1 to Maximum Number of Primordial Generations 

Perform Tournament Thresholding Selection 
If (Appropriate Number of Generations Accomplished) 

Then Reduce Population Size 
End If 

End Loop 
11 Juxtapositional Phase 

For i = 1 to Maximum Number of Juxtapositional Generations 
Cut-and-Splice 
Evaluate Each Population Member's Fitness (w.r.t. Template) 
Perform Tournament Thresholding Selection 

End Loop 
Update Competitive Template 
End Loop 

Figure 4.1.     mGA Pseudocode 

Following PEI is the primordial phase which contains several cycles of population 

growth and reduction. Next is the juxtapositional phase where the mGA operates on the 

BB population by cloning desired BBs, then recombining and selecting resulting strings 

with high fitness (again, with respect to the competitive template). The specialized re- 

combination operator (called cut-and-splice) operates on uneven length strings. Taken 

together, PEI and these two phases form an era. The mGA executes for a user-specified 

k eras, returning a solution which is then optimal with respect to BB size (k) and the 

competitive template. 

The mGA is a computationally expensive algorithm due to PEI. The fmGA is then 

proposed to reduce mGA complexity via probabilistic initialization schemes. The fmGA 

operates identically to the mGA in the juxtapositional phase. However, instead of PEI, it 

uses a probabilistic BB initialization technique creating a controlled number of BB clones 

of specified size. These BBs are then filtered, ensuring that (in a probabilistic sense) all 

desired BBs exist in the initial population. Goldberg et al. claim this variant is as effective 

as the mGA but without the initialization bottleneck caused by PEI [128]. 
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Competitive Template 

1 1 0 1 0 0 0 1 

♦ 
1 1 0 1 0 0 0 1 

Figure 4.2. Potential "Cut and 
Splice" Nontrivial 
Offspring 

Complete Solution for Fitness Evaluation 

Figure 4.3.     Template Fitness Ex- 
amples 

4-3.2 Related Building Block GAs. Several other BB-based GAs are proposed 

in the literature; other researchers classify them as linkage investigating GAs as they are 

specifically designed to find and propagate "tightly-linked" genes, or BBs [88]. Table 4.1 

lists other BB-based GAs briefly describing what differentiates each. 

Two items are of note here. First, we consider the mGA, fmGA, and gmGA as 

"Top-Down" approaches; the others are considered "Bottom-Up". They are classified in 

this fashion because of the different manner in which the algorithms attempt to determine 

appropriate BBs. The mGA, fmGA, and gmGA explicitly construct BBs in the initial 

population while the others use (or modify) randomly initialized individuals. Second, all 

GAs in Table 4.1 except Population-Based Incremental Learning and the Selfish Gene GA 

are (or are based on) work by Goldberg and his students. 

4-3.3 Building Block Observations. We note that the Building Block hypothesis 

has never been proved, and may never be, although it is generally accepted to hold for cer- 
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Table 4.1.     Building Block GAs 
GA Brief Description 

compact GA 
(cGA) [146] 

Virtual population; Changing probability vector de- 
termines convergence 

Extended Compact 
GA (ECGA) [144] 

Concrete population; Convergence determined by 
population marginal probability model 

fast messy GA 
(fmGA) [128] 

Probabilistic initialization of size k building blocks 

Gene           Expression 
Messy   Genetic   Algo- 
rithm (GEMGA) [172] 

Completely specified chromosomes; Randomly gen- 
erated initial population's size determines processed 
linkage size; 2 phases: Transcription attempts to de- 
termine linkage and RecombinationExpression com- 
pares/modifies the linkages of and then recombines 
two chromosomes 

Generalized messy GA 
(gmGA) [214] 

Replaces discrete-valued selection and filtering 
threshold parameters with real-valued; Probability 
distributions then incorporated 

Linkage Learning GA 
(LLGA) [145] 

Overspecified chromosomes; Number of introns deter- 
mines processed linkage size; 2 phases: Selection and 
Exchange, which performs 2-point crossover, remov- 
ing redundant genes from children 

messy GA 
(mGA) [130, 129] 

All size k building blocks explicitly generated 

Population- B ased 
Incremental   Learning 
(PBIL) [22] 

Incorporates hill-climbing; Changing probability vec- 
tor determines convergence 

Selfish Gene GA 
(SGGA) [72, 71] 

Virtual population modeled by marginal probability 
vectors; Changing probability vector determines con- 
vergence 

tain cases and not for others. As any EA executes, each generation's underlying probability 

density functions are unknown thus making such a proof difficult. Additionally, successful 

BB use critically depends on the EA representation's degree of linear separability (decom- 

position of the overall problem into subproblems) [264]. By definition, if a representation 

is not linearly separable it suffers from epistatic effects (epistasis is a term describing gene 

interrelationships). Standard EAs can cope with some degree and types of epistasis, but 

since exact epistatic relationships are most often unknown Goldberg's hypothesis may or 

may not hold in any given situation. 
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These "negatives" have not prevented successful EA applications based on explicit 

BB manipulation. For example, the mGA and fmGA are used in practical single-objective 

applications [95, 121, 215]. Deb also implemented a floating point mGA version that 

achieved good results on a numeric and cylinder design problem [82]. When considered at a 

meta-level, standard EAs (which are predicated upon BBs) often perform much better than 

random search, implying their use of BBs and problem domain knowledge is responsible 

for their effectiveness and/or efficiency. Thus, it appears that BB concepts are useful in 

some problem solving situations. With this background, we now focus on the explicit use 

of BBs when solving MOPs. 

4-4    MOPs and Building Blocks 

Conjecture 1:    Appropriately defined building blocks can be sampled, recombined, and 

resampled to form "better" MOP solutions. □ 

This research attempts to determine Conjecture l's validity. The preceding dis- 

cussions support the practical usefulness of BBs. Although their effectiveness is not yet 

theoretically quantified they can be employed in MOEAs regardless of chromosome encod- 

ing. We wish to extend BB concepts successfully applied to single-objective optimization 

problems into the MOP domain, and use existing analogous ideas in search of more effective 

and efficient MOEAs. 

The Schema Theorem has historically been developed, described, and analyzed in 

terms of single-objective functions. However, BB concepts remain applicable when ex- 

tended to MOPs. We first note that BBs are not structurally modified by the simultaneous 

optimization of two or more functions. To illustrate, assume a binary-valued genotype of 

length / containing several BBs. Single-objective optimization maps this genotype to a 

single value; this is the genotype's associated fitness or phenotype. In MOPs the same 

genotype maps to a multi-valued fitness vector. However, the genotype's structure and its 

BBs have not changed in any way! It's simply that multiple fitness functions have been 

evaluated with respect to a single genotype. 
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Single-objective optimization attempts to find a genotype(s) mapping to "high" fit- 

ness; MOPs attempt the same. While single-objective optimization algorithms generally 

search for a (possibly) unique single solution, MOEAs often focus on a set of Pareto opti- 

mal solutions which may well have very dissimilar desired BBs! Thus, "good" MOP BBs 

should help drive search towards solutions in Ptme • 

As indicated in Section 2.2.1, Pirue defines the MOP's trade-off surface from which 

some DM implicitly indicates acceptable solutions. These solutions may have no clearly ap- 

parent relationship besides their membership in the Pareto optimal set. In fact, BBs which 

are "good" for some solution(s) in Ptme may be "not good" for an arbitrarily chosen other 

(or subset). Taking Fonseca's 2nd MOP [109] as an example illustrates this phenomenon. 

Minimize F = (/i(äf),/2(äT)), where 

n 1 

h(x)    =    1 - exp(- V(z; - -y=)2), 

n 

h(x)   =   i_exp(-$>i + 7=)2), (4.7) 
t=i Vn 

where —4 < X{ < 4 and n = 2. 

Figure 4.4 shows a representation of this MOP's Ptme > and Figure 4.5 its PFtme (in- 

dicated by the V symbols; dominated vectors are represented by '.').3 When analyzing 

Figure 4.4 it is easily seen that when taken overall, some relationship (structure) exists 

between the Pareto optimal solutions. 

For further insight, assume the following real-valued BBs: 

BB1    =    ([-0.7,-0.5], [-0.7,-0.5]), (4.8) 

BB2    =    ([0.5,0.7], [0.5,0.7]). 

Figure 4.6 plots all solutions containing BB\ as '+'s and BB2 as Vs. Figure 4.7 plots their 

associated vectors using the same symbols. As easily seen, solutions in the lower-left hand 

3Figures 4.4 and 4.5 are deterministically derived; Pareto representations may slightly change when 
computational resolution is increased/decreased. 
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Fonseca (2) Pareto Optimal Solutions 

'f4V'V' 
!) Parato Front 

Figure 4.4.     Fonseca (2) Piru.e Figure 4.5.     Fonseca (2) PFtrue 

corner of Figure 4.6, although closely related to others in their immediate neighborhood 

(i.e., they all contain BB\), are different from solutions in the upper-right hand corner that 

contain BB2. Figure 4.7 shows that in this case, the different BBs map to very different 

portions of objective space yet both are equally important! We wish to use BB concepts 

to gain insight into solving MOPs with MOEAs. 

Selected Building Blocks 

"*or 

-0.S 0 0.5 1 1.6 2 

Selected Vectors 

Figure 4.6.     Solutions   Containing 
BBX and BB2 

Figure 4.7.     Corresponding 
PFtrue Vectors 

MOEAs are able to use BBs "good" for only some solutions in Ptrue , evidenced by 

the successful approaches predicated on sharing, crowding, and niching techniques [107, 

152, 326] (also discussed in Section 3.3.2.3). Albeit in more abstract terms, other MOEA 

researchers also believe that MOP-BB issues are significant. Several MOEAs implement 

some form of mating restriction where analogous to the <Jshare term used in computing 
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shared fitness, a parameter is used describing the "distance" (over some norm) within which 

solutions (or their evaluated vectors) must reside in order to recombine (see Section 3.3.2.4). 

But this is nothing other than what was just stated - it suggests researchers suspect that 

BBs "good" for one solution in Pknown are possibly "not good" for others! 

4-4-1 Building Block Deception. Some mGA theoretical results must be viewed in 

a different light when extended to the MOP domain. For example, the mGA is predicated 

upon a priori definition of the suspected highest order deceptive nonlinearity present in the 

problem being solved [130]. Thus, if we assume a given problem is order-k deceptive, all 

order-1, order-2,..., order-(&—1) schemata direct GA search awayfromthe global optimum 

to a deceptive one [342]. This implies all lower-order schema (i.e., order < k) contained as 

special cases of an order-fc schemata have different bit-values. These types of problems are 

termed deceptive. The following theorems (similar to single-objective optimization results) 

help bound fc's value when considering possibly deceptive MOPs. 

Theorem 5:      The orders of deception for the functions composing an MOP are not 

necessarily equal. □ 

Proof: Existence proof. Assume an MOP composed of two functions - one is Whit- 

ley's Deceptive Function 1 (a fully deceptive order-3 function), and the other is Whitley's 

Deceptive Function 2 (a fully deceptive order-4 function) [342]. Q.E.D. 

Theorem 6: An MOP's order of deception is at worst I, where I is the number of bits 

encoding the chromosome. D 

Proof: Existence proof. Assume an MOP, of which one function is Whitley's Deceptive 

Function 2 [342]. This is a fully deceptive function of order I. Q.E.D. 

These results imply that when optimizing an MOP using a method where order is 

a required parameter, one must choose a value equal to or greater than the highest order 

of deceptiveness present in any function contained in the MOP. Selecting smaller values 
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may well prevent discovery of solutions in P<rue because mutation would be the only EVOP 

allowing discovery of the global schema. Theorem 6 also shows that an MOP's order of 

deception may in the worst case be /, as it may also be for single-objective optimization 

problems. 

4.5    The Multiobjective mGA (MOMGA) 

Having laid a foundation for understanding BB concepts and their use in evolutionary 

search, we now wish to explore the relationship between MOEA BBs by extending an 

existing single-objective BB-based GA to the MOEA domain. As no other known MOEA 

considers this approach this new algorithm is a "state of the art" contribution. 

The mGA [130] is initially considered as a vehicle with which to define and investigate 

MOP BBs. We select this algorithm for several reasons, although primarily because its 

population initially contains every possible BB of a specified size corresponding to (a subset 

of) solutions in Pirue. Additionally, it is designed to explicitly manipulate appropriate 

BBs in order to arrive at an optimal solution(s), its source code is freely available, its 

operation well understood, and its structure modifiable to solve MOPs. We discuss only 

mGA features modified in producing the MOMGA. The reader is directed to Goldberg et 

al.'s original papers [129, 130] for a more detailed discussion of basic mGA operation and 

theory. We extend the algorithm and associated theory in the following sections. 

4-5.1 The mGA, MOMGA, and Fitness Functions. The mGA requires a fitness 

function defined over some /-bit string, each /; £ {0,1}. The MOMGA uses no subfunc- 

tions; fitness functions operate on the entire /-bit string. This is to focus solely on the BBs 

used in MOP solutions and to prevent problems determining the relationship(s) between 

subfunctions and a complete MOP (if any). As previously discussed, the number of simul- 

taneously optimized fitness functions does not affect the genotype. Thus, the MOMGA 

evaluates each of k user-defined fitness functions taking an identical /-bit string as input. 

4-5.2 The mGA, MOMGA, and Solution Evaluations. The mGA initially con- 

structs every possible BB of a user-specified size k, resulting in a primordial population of 
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size 2k (fc). Each of these strings requires only a single function evaluation. The result is 

then stored and used repeatedly during the primordial phase. Likewise in the juxtaposi- 

tional phase, only one function evaluation is computed per generated individual string for 

a total of C evaluations. Thus, the mGA's algorithmic complexity is of order ö(2fc(fc) +C). 

Given identical string length, allelic cardinality, and order of deception (&), the MOMGA's 

population size is identical but it does require an increased number of function evaluations. 

However, the number of function evaluations then increases at a "manageable" (linear) rate 

as the MOMGA's complexity in solving a p-objective MOP is of order Ö(p2k(lk) + pC).4 

However, "manageable" is a subjective term. Real-world scientific and engineering MOPs 

often use computationally complex and time-consuming fitness calculations which may 

impact the use of multiple objective functions. In addition, as / and/or k grow, both the 

mGA's and MOMGA's complexity is of order 0(2h(k)). This indicates these algorithms 

have a computational bottleneck due to PEI, and in fact is a primary reason for developing 

alternative BB-based GAs (see Section 4.3.2). 

The MOMGA's storage requirements also increase linearly. Where the mGA stores 

a single value from each function evaluation the MOMGA stores a vector whose number 

of values corresponds to the number of functions being optimized. 

4.5.3 The mGA, MOMGA and EVOPs. The mGA incorporates tournament 

selection which effectively combines selection and fitness scaling [130, 19:pg. C2.3:l]. This 

is implemented by choosing q solutions at random (q > 2) and selecting the solution 

with highest fitness for inclusion in the next generation. That solution is also removed 

from the selection pool. The process is repeated until the population is filled. The mGA 

was constructed using this selection operator because it is easily implemented and gives 

desirable expected performance [130]. Also, q = 2 is originally selected in the mGA (and is 

a common parameter setting) as it results in "medium" selective pressure [17:pp. 174-180]. 

We also select q = 2 in the MOMGA. 

Pareto-based tournament selection (among others) has been successfully used in solv- 

ing MOPs [152]. Comparing vectors based on dominance is a way of finding the "best avail- 

4The variable p is used here to prevent confusion between the number of objectives and BB length. 
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able" MOP solutions. If nondominated vectors are the search target it only makes sense 

to use nondominance as the comparison criteria. Thus, we select currently Pareto optimal 

BBs/solutions (PcurTtnt 00) f°r further processing by making the MOMGA's tournament 

selection operator dominance- rather than fitness-based. 

However, the MOMGA implements a modified tournament selection operator directly 

based on the NPGA's selection scheme [154]. The NPGA randomly selects two solutions 

for a tournament, but also chooses a comparison set (tdom) of other individuals. Each 

of the two candidates are compared (using Pareto dominance) against each comparison 

set member. If one candidate is nondominated and the other is not (with respect to the 

comparison set), it is selected for reproduction. If neither or both are dominated sharing 

is implemented. Horn et al. found that a binary tournament alone produced insufficient 

domination pressure resulting in poor PFknown representations. They then introduced the 

comparison set to control what they call domination pressure, also giving suggested values 

(based on empirical observation) for this parameter [155]. 

We show in Appendix A that many Pareto-based MOEAs employ explicit niching and 

fitness sharing to track several genotypes (corresponding to varied phenotype performance) 

at once. Sharing is also common in multimodal single-objective optimization problems, 

where it attempts to prevent concentration on and then loss of an optimum (a situation 

termed genetic drift). Horn et al. implement such a scheme in their NPGA [154]; we 

employ an identical procedure in the MOMGA. 

As described above, two randomly selected candidates are compared (using Pareto 

dominance) against each solution in a comparison set. If neither or both's associated 

vectors are dominated, sharing occurs by determining the number of known vectors (the 

niche count) within some phenotypical niche radius (oshare) of the two candidates. The 

candidate with the smaller niche count is then selected. Horn terms this equivalence 

class sharing because these solutions can be considered "equally" fit [154]. Several other 

niching techniques do exist, e.g., preselection, crowding, and immune system models [153]. 

Engineering the MOMGA to employ the NPGA-niching scheme seemed the best choice 

given that it already employed tournament selection. 
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The mGA may employ both mutation and recombination (via "cut and splice"). The 

MOMGA makes no changes to these EVOPs' operation. One last crucial component of 

successful mGA operation is the competitive template. Engineering this concept for MOPs 

is by no means straightforward. 

4.5.4 The mGA, MOMGA, and Competitive Templates. The mGA uses a com- 

petitive template in both the primordial and juxtapositional phases. The primordial phase 

evaluates all BBs with respect to the template; the juxtapositional phase uses the template 

to evaluate fitness of the recombined BBs. The competitive template's purpose is to sepa- 

rate the value of some bit combination from an entire string without using prior functional 

knowledge. Thus, each partial string's assigned fitness is actually a template fitness where 

unassigned loci values are filled with the corresponding template values. Although using 

competitive templates allows for consistent evaluation of partial strings, a given template 

optimizes only one solution (itself) with respect to the available BBs. 

The mGA uses templates locally optimal to the previous era. A randomly generated 

template is used to find the locally optimal template for era 1, the resulting "best" answer 

(at era l's end) is used to find the locally optimal template for era 2, etc. The competitive 

template is changed by identifying the string with the highest template fitness value yet 

achieved; its values are substituted into the current template. This competitive template 

then represents the best total solution yet known to the mGA and it is here we arrive at 

the crux of the matter. 

Traditional mGA search is concerned with finding a single ("best") answer. The 

competitive template limits mGA search and is thus critical to finding an optimum and 

not just an optimal solution. As MOPs offer a set of solutions the problem is how to 

extend the template concept in order to provide that desired set. An easy answer of using 

a template for each solution in Ptne or Pknown is not feasible. This implies determining 

a number of solutions a priori when neither of these sets' representable cardinalities is 

known. Furthermore, how should these (possibly quite numerous) templates be employed 

in the MOMGA? Combinatorial computational considerations are easily seen. Thus, the 

following strategy is employed. 
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During its primordial and juxtapositional phases the MOMGA uses a different com- 

petitive template associated with each objective function being optimized. Each time a 

partial string's template fitness vector is computed a random template is selected from 

the k available. At the end of each era the values of the "best" solution for each objective 

replace corresponding values in the respective current template. We realize that mGA 

competitive templates are criticized for being locally optimal [82], as is this VEGA-like 

approach (VEGA selection may result in strong "speciation" [107, 306]). We again note 

our initial focus is determining the use and role of BBs in forming MOP solutions. 

4.6    MOMGA vl.O 

A diagram showing our MOMGA implementation is presented in Figure 4.8. We per- 

formed all mGA modifications discussed in Sections 4.5.1 through 4.5.4, along with adding 

and maintaining a secondary solution population {Pknown )• The MOMGA pseudocode is 

shown in Figure 4.9. 

1    0 

1   1 

1 0 

1 1 

1   Ö 

1   1 

Ö   1 

Ö   0 

0* 1 

0 0 

Ö    1 

0    0 

EKü 
HUB DUD 

Evaluate Blocks' Fitnesses 
(w.r.t. Template) 

(1) Tournament Selection 
(via Domiance) 

(2) Population Reduction 
• 

(1) Cut & Splice 
(2) Evaluate Population's Fitnesses 

(w.r.t. Template) 
(3) Save Pareto Oprimal Solutions 

(4) Tournament Selection 
(via Domiance) 

Initialization Phase 
Creates C (' ) Building Blocks 

C = Alphabet Cardinality 
k = Building Block Size 
I  = String Length 

Primordial Phase 
"Dope" Population with 

Good Building Blocks, 
Determined by Multiple 

Objective Functions 
(w.r.t. Template) 

Juxtapositional Phase 
Recombination Results in 
"Optimal" Order- k Solutions 

Repeated " k" Times 

Figure 4.8.     MOMGA Operation 

In each era, after each juxtapositional generation, we add PCUrrent (t) to Pknown (t — 1) 

(i.e., PCurrent(t) U Pknown(t — !))• Because a solution's classification as Pareto optimal is 

dependent upon the context within which it is evaluated (i.e., some current solution set), at 

MOMGA termination all solutions of Pknown are tested and those whose associated vectors 
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For n = 1 to k 
Perform Partially Enumerative Initialization 
Evaluate Each Population Member's Fitness (w.r.t. k Templates) 

// Primordial Phase 
For i = 1 to Maximum Number of Primordial Generations 

Perform Tournament Thresholding Selection 
If (Appropriate Number of Generations Accomplished) 

Then Reduce Population Size 
Endif 

End Loop 
/1Juxtapositional Phase 

For i = 1 to Maximum Number of Juxtapositional Generations 
Cut-and-Splice 
Evaluate Each Population Member's Fitness (w.r.t. k Templates) 
Perform Tournament Thresholding Selection and Fitness Sharing 
*known\t) — * current(t) U ■^known(J ~ *-) 

End Loop 
Update k Competitive Templates (Using Best Value Known in Each Objective) 
End Loop 

Figure 4.9.      MOMGA Pseudocode 

are dominated removed. Solution culling is performed at this time so as to not unnecessarily 

slow MOMGA execution by the ö{n2) complexity of dominance determination. 

4.6.1 Concurrent MOMGA (cMOMGA). Parallelizing the MOMGA may lead 

to improved efficiency. Combining results (Pknown ) of several simultaneously executing 

MOMGA runs is perhaps the simplest parallel implementation. However, another possi- 

bility may be considered. 

MOMGA templates are locally optimal, i.e., they focus search toward portions of 

the search space. Thus, instantiating several independent MOMGA runs all solving the 

same MOP initially focuses search in different (and more) portions of the search space. 

Allowing BB communication between MOMGA instantiations may then improve overall 

performance. As previously noted, BBs good for some (sub)set of Pareto optimal solu- 

tions may be bad for another. Ordering MOMGA runs in some manner then implies two 

consecutively ordered runs are searching spaces "closer" together than any other two. A 

cMOMGA version then shares BBs between these consecutive MOMGA instantiations in 
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an attempt to increase performance. This process is illustrated in Figure 4.10. At termi- 

nation, each particular MOMGA's Pknown is combined, its associated vectors checked for 

domination, and a final Pknown reported. 

"Ordered" MOMGA Runs 

MOMGAs 
Executing 

in 
Parallel 

1 
Run# 1 Run #2 

MOMGA 

PEI 

Primordial Phase 

EH 
k.   IR'R 1       1 n? n 1 

1 
Run#N 

MOMGA 

PEI 

MOMGA 

PEI 

»rimordial Phase 

EU 
1 R!D 1         1 R!R 1   **  

Primordial Phase 

EH 
Juxtapostional 

Phase 
Juxtapostional 

Phase 
Juxtapostional 

Phase 

Figure 4.10.     Proposed cMOMGA Operation 

On the surface this approach may appear somewhat complex. High communication 

time is a recognized potential "show-stopper," significantly affecting parallel program ef- 

ficiency [185]. However, a well-engineered cMOMGA may not add significant overhead 

when compared to a like number of independent runs (as regards computational expense) 

and may result in better performance. 

Several parallel algorithm efficiency and effectiveness metrics exist; we consider pri- 

mary ones [185]. Serial run time is the elapsed time between program execution start 

and finish on a sequential computer. Parallel run time is the elapsed time from the initial 

parallel computation to the last (by any processor). Speedup is a relative measure showing 

(or not) the benefit of executing an algorithm in parallel. It is defined as the ratio of serial 

run time to parallel run time, using the same problem instance and executing on p pro- 

cessors. Efficiency measures the fraction of time a processor is actually processing, and is 

defined as the ratio of speedup to the number of processors. Cost is the product of parallel 

run time and the number of processors used. These computational performance metrics 

are then teamed with appropriate algorithmic performance measures to determine overall 

cMOMGA performance. We also note that although several parallel MOEAs have been 

implemented (see Appendix A) no formal computational performance results are reported. 

4-18 



4-7   Summary 

This chapter proposes a new MOEA (based on the mGA) which explicitly manipu- 

lates BBs in its search for Pine. The MOMGA's operation is substantiated by an overview 

and discussion of desired BB identification and application in the MOP domain. Although 

the MOMGA incorporates current MOEA theory and mGA structures that fact is no 

guarantor of "good" algorithm performance. In order to determine both its effectiveness 

and efficiency the MOMGA must be included in experiments comparing selected MOEAs' 

performance on appropriate MOPs. 
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V.   MOEA Test Suite Generation and Design 

When the mathematician says that such and such a proposition is true of one thing, it may 
be interesting, and it is surely safe. But when he tries to extend his proposition to everything, 
though it is much more interesting, it is also much more dangerous. In the transition from 
one to all, from the specific to the general, mathematics has made its greatest progress, 
and suffered its most serious setbacks, of which the logical paradoxes constitute the most 
important part. 

E. Kasner and J. Newman , Mathematics and the Imagination 

5.1    Introduction 

Many research efforts use numeric MOPs as examples to show or judge MOEA per- 

formance. However, there is no comprehensive discussion of MOP landscape issues in the 

MOEA literature, nor is there any explanation of why (the selected) numeric MOPs may 

be appropriate MOEA test functions. Extensive experimentation and analyses concerning 

MOEA parameters, components, and approaches are also lacking. 

To date, most MOEA researchers' modus operandiis an algorithm's comparison (usu- 

ally the researcher's own new and improved variant) against some other MOEA by analyz- 

ing results for specific MOP(s) (Schaffer's VEGA and MOP-F2 are typical [289]). Results 

are often "clearly" shown in graphical form indicating the new algorithm is more effective. 

However, these empirical, relative experiments are incomplete as regarding general MOEA 

comparisons. The literature's history of visually comparing MOEA performance on non- 

standard and unjustified numeric MOPs does little to determine a given MOEA's actual 

efficiency and effectiveness. A standard suite of numeric functions exhibiting relevant MOP 

domain characteristics can provide the necessary common comparative basis. 

The MOEA community's limited de facto test suites contain various functions, many 

of whose origins and rationale for use are unknown. Thus, a documented MOP test suite 

is an asset to MOEA research. We provide various MOPs for use in a standardized MOEA 

test suite. Supporting these proposals is a detailed discussion of general test suite issues 

and the MOP domain. 
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This chapter is organized as follows. Sections 5.2 and 5.3 discuss general test suite 

issues and relevant MOP domain characteristics. Section 5.4 then proposes appropriate 

numeric MOPs for an MOEA test function suite given the described MOP domain features. 

5.2   An MOEA Test Function Suite 

As previously indicated, the MOEA community has created limited test suites. Spe- 

cific functions are often used because other researchers did so in their research, or perhaps 

because the MOP appears to exercise certain MOEA components. It is not clear that these 

specific test functions are appropriate for inclusion into an MOEA test suite. Explanation 

is rarely offered as to the MOP's origin or raison d'etre, and several appear to be relatively 

"easy" (see Section 5.3). Poloni et al. [257] also note the lack of complex mathematical 

MOEA performance assessment tests. This situation implies that identification of appro- 

priate functions to objectively determine MOEA efficiency and effectiveness is required. 

Other researchers also note the need for a test suite of this type [83, 258, 331]. 

5.2.1 General MOEA Test Suite Issues. Generic test function suites are both 

condoned and condemned. Any algorithm successfully "passing" all submitted test func- 

tions has no guarantee of continued effectiveness and efficiency when applied to real-world 

problems, i.e., examples prove nothing. Automotive passenger airbags are a prime exam- 

ple; not until they were widely fielded was it discovered that airbag-babyseat interactions 

are sometimes deadly. Pattern recognition research recognizes the additional problem of 

"testing on the training data," where an algorithm is tuned for only one or a few problem 

instances [94]. These analogies hold when integrating the MOP and MOEA domains; new 

and unforeseen situations may arise resulting in undesirable consequences. An MOEA test 

suite is then a valuable tool only if relevant issues such as those that follow are properly 

considered. 

The NFL theorems [346] imply that if problem domain knowledge is not incorporated 

into the algorithm domain no formal assurances of an algorithm's general effectiveness 

exist. Previously proposed EA test suites examine an EA's capability to "handle" various 

problem domain characteristics. These suites incorporate relevant search space features to 
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be addressed by some particular EA instantiation. For example, De Jong [80] suggests five 

single-objective optimization test functions (Fl - F5) and Michalewicz [219] five single- 

objective constrained optimization test functions (Gl - G5). Whitley et al. [341] and 

Goldberg et al. [130] offer other formalized EA test suites; informal suites are also used [349, 

350]. 

De Jong's test bed includes functions with the following characteristics [126]: contin- 

uous and discontinuous, convex and nonconvex, unimodal and multimodal, quadratic and 

nonquadratic, low- and high-dimensionality, and deterministic and stochastic. Michale- 

wicz's test bed addresses the following issues [219]: type of objective function (e.g., linear, 

nonlinear, quadratic), number of decision variables and constraints, types of constraints 

(linear and/or nonlinear), number of active constraints at the function's optimum, and the 

ratio between the feasible and complete search space size. Particular EA instantiations are 

subjected to generic test suites like these and judged on their performance. 

Test suites must contain characteristic problems from target algorithms' problem 

domain. Some problems should represent real-world situations. Yet others should range 

in difficulty from "easy" to "hard." We also consider the following guidelines suggested by 

Whitley et al. [341]: 

- Some test suite problems should be resistant to simple search strategies. 

- Test suites should contain nonlinear, nonseparable, and nonsymmetric problems. 

- Test suites should contain scalable problems. 

- Some test suite problems should have scalable evaluation cost. 

- Test problems should have a canonical representation. 

Note that the NFL theorems also imply incorporating too much problem domain 

knowledge into a search algorithm reduces its effectiveness on other problems. However, 

as long as a test suite involves only major problem domain characteristics, any search 

algorithm giving effective and efficient results over the test suite might remain broadly 

applicable to problems from that domain. Thus, traits common to all (most) known MOPs 

must be defined. 
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5.3    MOP Domain Features 

We first assert that like single-objective EA optimization problems, numeric MOPs 

may be suitable representatives of real-world problems. Any modeled real-world problem is 

done so mathematically in a functional form, but MOPs arguably capture more information 

about the modeled problem as they allow incorporation of several functions (objectives). 

Regardless, modeling a real-world problem may result in a numeric or combinatorial MOP, 

one that is perhaps simple, perhaps complex. The MOP may contain continuous or discrete 

(e.g., integer-constrained) functions or even a mix of the two. We here restrict discussion 

to homogeneously continuous MOPs; other MOP types are discussed in Section 5.4.2. 

It is generally accepted that EAs are useful search algorithms when the problem 

domain is multidimensional (many decision variables), and/or the search space is very large. 

Many numerical examples used by MOEA researchers do not explicitly meet this criteria. 

Of the 30 distinct numerical MOPs in the literature (both constrained and unconstrained, 

see Appendix B), all but three use at most two decision variables and the majority use 

only two objective functions. This implies that unless the search space is very large (at 

the least), MOEA performance claims/comparisons based on these functions may not be 

meaningful. The MOEA may be operating in a problem domain not particularly well-suited 

to its capabilities or perhaps one which is not challenging. 

Some MOP test functions build upon commonly used single-objective optimization 

test functions. For example, Kursawe's MOP incorporates a modified Ackley's func- 

tion [17:pg. 143] and a modification of one provided by Schwefel [295:pg. 341]. Poloni's 

MOP incorporates a modified Fletcher-Powell function [17:pg. 143]. Finally, Quagliarella's 

MOP uses two versions of Rastrigin's function [51]. The rationale for construction and use 

of these and many of the other identified MOPs is unclear. 

Any proposed MOP test suite must offer functions spanning known MOP charac- 

teristics. Particularly, it must contain "MOEA challenging" functions. In order to then 

identify appropriate functions for inclusion relevant MOP domain characteristics must be 

identified and considered. We use the 30 known examples in the literature as the basis for 

discussion; a complete list is found in Tables B.l and B.2 in Appendix B. These MOPs 
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each incorporate 2-3 functions and 0-12 side constraints. Appendices C and D present a 

complete set of figures showing Pirue and PFirue for each MOP listed in the tables. These 

figures are deterministically derived by computing all decision variable combinations pos- 

sible at a given computational resolution. Their purpose is to highlight major structural 

characteristics of both Ptrue and PFir%e for use in constructing a sound MOEA test function 

suite. 

When implementing an MOEA it is (implicitly) assumed that the problem domain 

has been properly considered, and a decision made that an MOEA is an appropriate search 

algorithm for the given MOP. We also assume the MOEA's objective is return of Pinown • 

Thus, Tables 5.1 and 5.2 identify salient MOP domain characteristics viewed from an 

MOEA perspective and classified under a genotype and phenotype rubric. Newly identified 

characteristics may be considered later. We caution that these high-level characteristics 

were determined from the figures presented in Appendices C and D, whose representation 

(and succeeding interpretation) may slightly change based upon underlying computational 

resolution and graphical presentation. 

The table entries are explained as follows. Each row corresponds to one of the MOPs 

listed in Appendix B. Each column signifies some genotypic/phenotypic characteristic. 

Ptrue 's "shape" may be connected, disconnected, symmetric, and/or scalable. PFirue may 

be connected, disconnected, and convex or concave. MOPs exhibiting any of these char- 

acteristics are marked with an "x" in the appropriate column. Solution types are notated 

by the number of decision variables and their type, where "R" indicates real (continu- 

ous) decision variables. The number of functions is self-explanatory. Table 5.1 lists MOPs 

associated with only decision variable constraints, identifying their numbers and types. Ta- 

ble 5.2 lists MOPs which also contain side constraints, identifying both constraint numbers 

and types. Each MOPs' PFtrue 's shape is listed, as Pareto fronts may geometrically and/or 

topologically differ. We also note that only two of these MOPs (Fonseca's second [109] and 

Schaffer's first [276]) have analytical solutions for Ptrue • 

What is Ptrue's nature? Few MOEA efforts describe an example MOP's underlying 

decision variable (genotype) space, i.e., the space where Ptrue resides. Since an MOP 

is composed of two or more functions, the solution space is obviously restricted by their 
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Table 5.1. MOP Numeric Test Function Characteristics 
Genotype Phenotype 

Function 

CP 

o 
CP 
d 
d o 
Ü 

o 
CP 
d 
d o o 
CO s 

o 
•a 

<V 

B 
B 
>> 

CO 

HI 

o 
CO 

co 

H 
d o 

"o 
CO 

co 
d o 
CJ 

d 

CO 
+^ 
d 

•a 
5-H -^ 
CO 

d o 
Ü 

0) 

6 o 
Ü 

cy 
+^ 
o 
o> 
d 
d o 
Ü 

<v 
-t-= o 
CP 

d 
d o 
CJ 
CO 

Q 

0) 

% o 
d o 
O 

X 

d o 

Binh X X 2R 2 2 Curve X X 

Binh (3) X 2R 3 2 Point 
Fonseca X X 2R 2 0 Curve X X 

Fonseca (2) X X X nR 2 n Curve X X 

Kursawe X X X nR 2 0 Curve X X 

Laumanns X X 2R 2 2 Points X 

Lis X X 2R 2 2 Points X 

Murata X X 2R 2 2 Curve X X 

Poloni X 2R 2 2 Curves X 

Quagliarella X X nR 2 n Points X 

Rendon X X 2R 2 2 Curve X X 

Rendon (2) X X 2R 2 2 Curve X X 

S chaffer X X 1R 2 0 Curve X X 

Schaffer (2) X X 1R 2 1 Curves X 

Vicini X 2R 2 2 Curve X 

Viennet X X 2R 3 2 Surface X 

Viennet (2) X 2R 3 2 Surface X 

Viennet (3) X 2R 3 2 Curve X 

combined limitations (e.g., decision variable range and side constraints). Within that space, 

Ptrue may be connected or disconnected, an (hyper)area or separate points, symmetric in 

shape, scalable, and so forth. Solutions may be discrete or continuous, and are composed 

of one or more decision variables. When solved computationally (and assuming feasible 

solutions exist), an MOP's PtTUe has only a lower bound (see Theorem 1 in Section 2.2.2.1); 

the upper bound is unknown and varies depending upon the underlying computational 

resolution. 

What is PFtrue 's nature? PFtrue lies in objective space and as already noted, may 

be (dis)connected, convex or concave, and multidimensional. In fact, the structure of any 

Pareto front has theoretical dimensional limitations depending on the number of functions 
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Table 5.2.     MOP Numeric Test Function (with side constraints) Characteristics 
Genotype Phenotype 

Function 

CP 

o 
CD 
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CP -^ 
CJ 
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d o o 
CO 

• <-H 
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o 
+•= 

CP a a 
to 

CP 
1—1 

to -a u 
CO 

CO 

CP 
ft 
>> 
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d o 

• 1—1 
+^ 
pi 

1—1 o 
CO 

CO 

d o 
o 
d 

CO 

d 
'S 

JH 
+^ 

CO 

d o 
0 

f-H -^ 
<P a o 
cp 
0 

cp 
+^ o 
CP 
d 
d o 
U 

cp 
+^ o 
cp 
Pt 
d o o 
CO s 

cp 

% 
d o o 

<p > 
d o 
Ü 

Belegundu X X 2R 2 2 + 2S Curve X X 

Binh (2) X X 2R 2 2 + 2S Curve X X 

Binh (4) X 2R 3 2 + 2S Surface X X 

Jimenez X X 2R 2 2 + 4S Curve X X 

Kita X X 2R 2 2 + 3S Curves X 

Obayshi X X 2R 2 2 + IS Curve X X 

Osyczka X 2R 2 2 + 2S Points X X 

Osyczka (2) X 6R 2 6 + 6S Curves X 

Srinivas X X 2R 2 2 + 2S Curve X X 

Tamaki X X 3R 3 3 + IS Surface X 

Tanaka X 2R 2 2 + 2S Curves X 

Viennet (4) X 2R 3 2 + 3S Surface X 

composing the MOP (see Theorem 3 in Section 2.2.2.2). PFtrue 's shape can range from a 

single vector to a collection of multi-dimensional surfaces. 

Test suite functions should encompass (combinations of) all these possible character- 

istics. Although no guarantor of continued success, any search algorithm giving effective 

and efficient results over the test suite might be easily modified to target specific problems. 

5.3.1 Related MOP Domain Research. Deb has recently published work which 

also addresses MOEA test suite issues [83, 84]. As we are cooperating with him in some 

MOEA research his efforts deserve critical attention, especially as he proposes a method- 

ology for constructing MOPs exhibiting desired characteristics. Contrived functions may 

then be generated for use in MOEA test suites. We address key issues as they are ordered 

in Deb's tech report [83]. 

Deb defines both a local and global Pareto optimal set. His global Pareto optimal 

set is what we term PtTue', our terminology is easily extended to denote a local Pareto 
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optimal set, i.e., P;oca;. However, Piocai is ill-defined and may be confusing. Consider 

Deb's definition: 

Definition 11 (Local Pareto Optimal Set): Given some Pareto optimal set V, if 

Va; G V, —I3J/ satisfying || y — x ||oo < e, where e is a small positive number (in principle, 

y is obtained by perturbing x in a small neighborhood), and for which F(y) X F(x), then 

the solutions in V constitute a local Pareto optimal set. D 

This definition implies that for some given set of Pareto optimal solutions, each is 

perturbed in some manner but no new nondominated vectors are found. Deb's purpose 

here is defining a set of Pareto optimal solutions whose associated front {PF]oca}) is "be- 

hind" PFtrue for the given MOP. Although conceptually possible, any Pioca] 's existence is 

dependent upon the e selected within which solutions are perturbed. Additionally, too 

large an e prohibits a Pi0Cal ■> too small an e may result in many local fronts. 

Deb also extends the concepts of multimodality, deception, an isolated optimum, and 

collateral noise (well known single-objective EA difficulties) to the multiobjective domain. 

We dispute two of these extensions. First, he defines a deceptive MOP as one in which 

there are at least two optima (PFiocai and PFirut ) and where the majority of the search 

space favors PFiocai. As stated above this concept depends on Pjoca/ 's existence. Secondly, 

Deb defines a multimodal MOP as one with multiple local fronts. This definition mixes 

terminology. One should use the term multimodal only when referring to a single-objective 

optimization function containing both local and global minima. As all vectors composing 

a Pareto front are "equally" optimal there is no Pareto front modality. Perhaps the term 

"multifrontal" is a better choice to reflect this situation. 

Deb also notes some of the same MOP phenotype characteristics as we presented in 

Section 5.3. He points out that when computationally derived a non-uniform distribution 

of vectors may exist in some Pareto front. He limits his initial test construction efforts 

to unconstrained MOPs of only two functions; his construction methodology then places 

restrictions on the two component functions so that resultant MOPs exhibit desired proper- 
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ties. To accomplish this he defines the following generic bi-objective optimization problem: 

Minimize F — (fi(x),f2(x)), where 

h(x)   -   f(xi,...,xm), 

J2{x)   =   g(xm+1,... ,xN)h(f(xi,... ,xm),g(xm+1,... ,xN)) . (5.1) 

The function /i is a function of (m < N) decision variables and fa a function of all 

N decision variables. The function g is one of (JV — m) decision variables which are not 

included in function /. The function h is directly a function of / and g function values. 

The / and g functions are also restricted to positive values in the search space, i.e., / > 0 

and g > 0. Deb then lists five functions each for possible / and g instantiation, and four 

for h. These functions may then be "mixed and matched" to create MOPs with desired 

characteristics. 

He states these functions have the following general effect: 

/ - This function controls vector representation uniformity along the Pareto front. 

g - This function controls the resulting MOP's characteristics - whether it is multifrontal 

or has an isolated optimum. 

h - This function controls the resulting Pareto front's characteristics (e.g., convex, discon- 

nected, etc.) 

We agree that these functions respectively influence search along and towards the 

Pareto front, and the shape of a Pareto front in E2. However, one of Deb's examples high- 

lights a possible problem with some MOPs constructed using this methodology. Consider 

the following [83:pg. 9]: 
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Deb's Multimodal Example 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9 1 

Figure 5.1.     ff(#2) Values 

1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Figure 5.2.     Pareto Fronts 

Minimize F = (fi(xi,x2), f2{x\,x2)), where 

fi(xi,x2)    =    »i, 

h(xi,x2)    = 
2.0 - eXp{-(^)2} - Q.8exp{-(^)2} £2^6^21 

X\ 
(5.2) 

In this MOP f2 may also be represented as ^^. Thus, g(x2) is the bimodal function 

represented in Figure 5.1. This function has optima of ff(0.6) « 1.2 and g(0.2) « 0.7057. 

Figure 5.2 shows the MOP's Pareto fronts (as Deb proposes). The lower portion of the up- 

per vector band Deb terms PFiocai; the lower band is PFtrue . The solutions corresponding 

to Piocai are {(x\, x2) \ x2 « 0.6} and those corresponding to Ptne are {(^l? x2) \ %2 & 0.2}. 

Deb then implies an MOEA has difficulty finding PFtrue because it gets "trapped" in 

the local optimum, namely PFiocai. However, this is not a phenotypical effect but rather 

one due to the underlying genotype space. In this computational derivation function g(£2)'s 

global optimum is in a narrow valley where fewer discretized search points exist. A pure 

random search results in fewer points stochastically found "close to" or in this valley, as 

opposed to the broad valley surrounding the local optimum containing many more points. 

Thus, the difficulty in finding PFir%e is due to the number of discrete points near g(x2ys 

global optimum and not simply the fact that PFiocai exists. This example is one showing 

deceptiveness rather than multifrontality. 
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This example also highlights a problem we previously alluded to - that of discretizing 

continuous functions (or solution spaces). The resultant mapping may not reflect reality 

in that the computational discretization process may introduce "errors." Additionally, a 

uniform discretization of decision variable space does not imply uniform mappings into 

objective space. In general, one must then be careful when analyzing and comparing 

MOEA performance in various MOP domains. Different MOEA techniques (including 

parameters and EVOPs) perform differently between and even within these domains (c.f., 

the NFL theorems [346]). 

Additionally, this methodology is not the only way to construct MOPs exhibiting 

some set of desired characteristics. Real-world MOPs may have similar genotype and/or 

phenotype characteristics but look nothing at all like the examples Deb proposes. Thus, 

the fact an MOEA "passes" all test functions submitted using Deb's methodology may 

have no bearing on its performance in solving real-world MOPs. However, the same can 

be said of the test suite proposed in the next section. Any test functions must be carefully 

selected to reflect as accurately as possible the problem domain they represent. 

This analysis is not meant to belittle Deb's effort. His methodology sometimes results 

in MOPs with analytical solutions for Ptrue or PFtrue, allowing for absolute comparison 

of MOEA results and the MOP optimum. He also is attempting to generate an MOEA 

test suite containing functions which in toto consider relevant MOP genotype/phenotype 

characteristics. Because several distinct MOPs may be created using Deb's initial method- 

ology [83], direct implementations of those functions are not listed in Appendix B. 

5.4    Numeric MOEA Test Suite Functions 

Having shown the requirement for and considered the general issues involved in an 

MOEA test function suite we now propose initial problems for inclusion. As discussed in 

the last section, a sound methodology for constructing MOPs with arbitrary complexity 

and characteristics still eludes us. Thus, proposed test suite MOPs are drawn from the 

published literature. These MOPs in toto address some of the issues discussed in Section 5.2 

and reflect the characteristics in Table 5.1. We restrict initial functions to those with no 

side constraints.   Their mathematical formulations (which may be slightly revised from 
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the originals or as we elsewhere proposed [327]) are shown in Table 5.3.   Figures 5.3 

through 5.16 show representations of each MOPs' Ptme and PFtTUe -1 

Schaffer's first (unconstrained) two-objective function is selected for three primary 

reasons. First is its historical significance; almost all proposed MOEAs have been tested 

using this function. It is also an exemplar of relevant MOP concepts. Second, this MOP 

allows determination of an analytical expression for PFtrue [325]. Third, as noted by 

Rudolph [276] this MOP's Ptme is in closed form so solutions' membership in Ptme is then 

easily determined. This MOP's PFtrue is a single convex Pareto curve and its Ptme a line. 

However, its one decision variable implies it may not be well-suited to an MOEA's search 

capabilities. We rename this problem MOP1. 

Fonseca's second MOP is also selected. This two-objective function has an advantage 

of arbitrarily adding decision variables (scalability) without changing PFtrue 's shape or 

location in objective space [109]. This MOP's PFtr%e is a single concave Pareto curve and 

its Ptme an area in solution space. Additionally, a closed form for this MOP's Pirueis 

claimed [109]. We rename this problem MOP2. 

Next is Poloni's MOP, a maximization problem. This two-objective function's Ptrue is 

two disconnected areas in solution space while its PFtrUe is two disconnected Pareto curves. 

Its solution mapping into dominated objective space also appears more convoluted than 

other MOPs from the literature. We rename this problem MOP3. 

Kursawe's MOP is included. This two-objective function's Ptrue is several discon- 

nected and unsymmetric areas in solution space. Its PFtme is three disconnected Pareto 

curves. Like MOP3, its solution mapping into dominated objective space is also quite con- 

voluted. Like MOP2, its number of decision variables is arbitrary. However, changing the 

number of decision variables appears to slightly change PFtme 's shape and does change 

its location in objective space. 

Figure CIO in Appendix A was derived using Kursawe's MOP with two decision 

variables. Compare this to Figure 5.8 which uses three decision variables. It is easily seen 

xNote that the graphs' scales for Ptrue. may be different than what is stated in Table 5.3 to show Ptrue 's 
"shape" more clearly. 
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that PFtrue and the dominated vectors have shifted in objective space. Implementing this 

MOP with four decision variables resulted in another shift. We can make no conclusive 

claims about PFtrue 's changing shape without increasing the computational resolution 

used in constructing the graphs. We rename this function MOP4. 

We also propose Viennet's third MOP. This tri-objective function's Ptrue consists of 

disconnected areas in solution space, and its PFtr%e a single, convoluted three-dimensional 

Pareto curve. We rename this function MOP5. 

An MOP constructed using Deb's methodology (and used by him as an example [83]) 

is selected. Like MOP4, this two-objective function's Ptrne and PF%r%t are disconnected, 

although its PF%r%t consists of four Pareto curves. Its solution mapping into dominated 

objective space is not as convoluted as MOP4's. This problem is used to compare MOEA 

performance in finding similar phenotypes produced by different MOPs (c.f., MOP4). We 

rename this function MOP6. 

Finally, we propose Viennet's second MOP. This tri-objective MOP's Ptrue is a con- 

nected region in solution space. Its PFirue appears to be a surface and its mapping into 

objective space appears straightforward. This function is primarily meant to complement 

to MOP5. We rename this function MOP7. 

Table 5.3  MOEA Test Suite Functions 

MOP Definition Constraints 

MOP1 F = (h(x),f2(x)), where -105 < x < 105 

Ptrue con- 
nected, 
PFtrue convex 

Mm)     = 
M^)   = 

x2, 

(*-2)2 

MOP2 F=(Mm),MS)), where —4 < Xi < 4; i = 1,2,3 
Ptrue con- 
nected, 
PFtrue concave, /i {x}     =     1 - exp(- -f>'--)=)2)' 
number  of  de- 
cision variables 
scalable f2(x)     =     l-exp(- 
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Table 5.3  (continued) 

MOP Definition Constraints 

MOP3 
Ptrue dis- 
connected, 
PFtrue dis- 
connected      (2 
Paxeto curves) 

Maximize F = {fi(x,y), f2(x,y)), where 

h(x,y)     =    -[l + (Ai-Bi)2 + (A2-B2)
2], 

h(x,y)     =     -{(x + 3)2 + (y + l)2] 

-3.1416 < x, y < 3.1416, 

Ai     =     0.5 sin 1 — 2cosl + 

sin2 — 1.5cos2, 

A2     =     1.5 sin 1 — cos 1 + 

2 sin2- 0.5 cos 2, 

Si     =     0.5 sin x — 2 cos x + 

siny — 1.5 cos y, 

B2     =     1.5 sin x — cos x + 

2 sin y — 0.5 cos y 

MOP4 
Ptrue dis- 
connected, 
PFtrue discon- 
nected             (3 
Paxeto curves), 
number of de- 
cision variables 
scalable 

F = {h{x)>h{x)), where -5 < Xi < 5; t = 1,2,3 

fl{S)     =     'jj(_10e(_0-a)V*?+-?+i), 
i=l 

h(x)     =     £(|*i|°-8 + 5«n(*08) 
t=l 

MOP5 
Ptrue dis- 
connected   and 
unsymmetric, 
PFtrue con- 
nected   (a   3-D 
Paxeto curve) 

F = {h{x,y),h{x,y),h(x,y)), where 

h(x,y)     =     0.5 * (x2 + y2) + sin(x2+y2), 

tit  ,*              (3x-2y + 4)2       (x-y + 1)2 

f  /,-   ,.\                                                      -1  -tr(-x2-y2) 

-30 < x, y < 30 

(xz + yz +1) 

MOP6 
Ptrue dis- 
connected, 
PFtrue discon- 
nected             (4 
Paxeto curves), 
number           of 
Paxeto    curves 
scalable 

F = (fi(x,y),f2(x,y)), where 

h(x,y)    =    x, 

h(x,y)     =     (l + lOy)* 

h       I        X        \a              X         ri-ntiTrn-rW 

0 < a;,?/ < 1, 

9     =     4, 

a     =     2 

1 + Wy          1 + 10y 

MOP7 
Ptrue connect- 
ed,    PFtrue dis- 
conn ected 

F = {h(x,y), f2{x,y), h(x,y)), where 

(*-2)2       (J/ + 1)2      „ 
h(x,y)    -                         13 

M*,v)     =      (* + «^-3)a + (-« + * + »' _ir, 

-400 < c, 2/ < 400 

These proposed MOEA test functions address the issues mentioned in Section 5.2. 

MOP1 and MOP2 are arguably "easy" MOPs. MOP2 and MOP4 are scalable as regards 

decision variable dimensionality.   MOP6 is scalable as regarding the number of Pareto 
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Figure 5.3.     MOP1 Ptrue 

MOP2 P^ 

/ 

Figure 5.4.     MOP1 PFtrue 

Figure 5.5.     MOP2 Ptrue Figure 5.6.     MOP2 PFirue 

curves in PFirue. MOP5 and MOP7 are tri-objective MOPs. All are nonlinear, and 

several show a lack of symmetry in both PtrUe and PFtne. Taken together these MOPs 

begin to form a coherent basis for MOEA comparisons. However, other relevant MOP 

characteristics (as reflected in Tables 5.1 and 5.2) should also be addressed by further 

MOPs selected for test suite inclusion. These additional MOPs may need to be constructed 

in order to exhibit desired characteristics. Other MOP types should also be considered 

even though not pursued further in this research. 
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M0P3 PF|lu| 

Figure 5.7.     M0P3 Ptrue 
Figure 5.8.     M0P3 PFtrue 

-0.4. 

-0.6 ~ 

ill1!« .    - . 
l*pr 

Figure 5.9.     MOP4 Ptrue Figure 5.10.     MOP4 PFirue 

Table 5.4  Side-Constrained MOEA Test Suite Functions 

MOP Definition Constraints 

MOP-C1 F — (h{x,y),h{x,y)), where 

h (x, y)     =     4a;2 + 4y2, 

f2(x,y)     =     (x - 5)2 + {y - 5)2 

0<a;<5, 0<j/<3, 

0     >     (x - 5)2 + y2 - 25, 

0     >     -(x - 8)2 - 

(2/ + 3)2 + 7.7 

5-16 



Table 5.4   (continued) 

MOP Definition Constraints 

MOP-C2 F=(/i(2?),/2(2T)), where 

/l(2?)      =      -(25(27! - 2)2 + (272 - 2)2 + (273 - l)2 

+ (274-4)2 + (275-l)2, 

fl(x)       =       x\ + 27?, + 27| + x\ + 272 + 27^ 

0 < 271 , 272 , 276   <  10, 
1 < 273,275 < 5, 
0 < 274  < 6, 

0       <       271+272-2, 

0       <       6 — 27l — 272 , 

0       <       2-272+271, 

0       <       2-271+3272, 

0     <     4-(273-3)2 - 274, 

0     <     (275 - 3)2 +276-4 

MOP-C3 F = {h(x,y),h{x,y),h{x,y)), where -4 < 27,j/ < 4, 

y     <     -427 + 4, 

27        >        -1, 

y      >      27-2 

5.4-1 Side-Constrained Numeric MOEA Test Functions. Side-constrained nu- 

meric MOPs should be included in any comprehensive MOEA test function suite; we here 

propose suitable MOPs drawn from the published literature. However, one must be aware 

that solving constrained MOPs with MOEAs brings in other open research issues, most 

notably how the side constraints are accounted for to ensure feasible solutions. 

Binh's second MOP is selected. This two-objective function's Ptrue is an area in solu- 

tion space and its PFtrue a single convex Pareto curve. We rename this problem MOP-C1. 

Next is Osyczka's second MOP, which is a heavily constrained, six decision variable prob- 

lem. This two-objective function's PtrUe 's shape is currently unknown while its PFtrue is 

three disconnected Pareto curves. We rename this problem MOP-C2. Finally, Viennet's 

fourth MOP is selected for inclusion. This three-objective function's PiTue is an irregularly 

shaped area in solution space. Its PFirue is a Pareto surface. We rename this prob- 

lem MOP-C3. These MOPs' mathematical formulations are shown in Table 5.4; figures 

showing representations of each MOPs' PiT%t and PFirue are found in Appendix D. 
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Figure 5.11.     M0P5 Ptne 
Figure 5.12.     M0P5 PFirue 

Figure 5.13.     M0P6 Ptrue Figure 5.14.     M0P6 PFirue 

5.4-2 Combinatorial and Real-World MOE A Test Functions. Although most 

MOP test functions found in the MOEA literature are numeric, some combinatorial prob- 

lems are used that provide differing algorithmic challenges. A combinatorial optimization 

problem is mathematically defined as follows: [120] 

Definition 12 (Combinatorial Optimization Problem): A combinatorial opti- 

mization problem -K is either a minimization or maximization problem consisting of three 

parts. 

1. A domain Dv of instantiations; 

2. For each instance I 6 Dn a finite set S„(I) of candidate solutions for I; and 
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Figure 5.15.     M0P7 Ptrue 
Figure 5.16.     M0P7 PFtr%e 

3. A function m^ that assigns a positive rational number mv(I,o~) to each candidate 

solution a 6 S^I) for each instance I £ Dv. m7r(7, o) is called the solution value 

for a. 

D 

An MOEA is able to search these finite (discrete) solution spaces but may require 

specialized EVOPs ensuring only feasible solutions (i.e., SW(I)) are generated for evalua- 

tion. However, the phenotype domain of combinatorial MOPs is slightly different than that 

of its numeric counterparts. These MOPs' mapping into objective space is discrete and 

offers only isolated points (vectors) in objective space. As only a finite number of solutions 

exist only a finite number of corresponding vectors may result. Although these vectors may 

appear to form a continuous front when plotted, the genotype domain's discrete nature 

implies no solutions exist mapping to vectors between those composing PF%r%t. 

Various combinatorial MOPs are reflected in the MOEA literature. Horn [154] and 

Deb [83] present combinatorial (unitation) MOPs. Louis converts a deceptive GA prob- 

lem into an MOP [207]. TVP-Complete problems are combinatorial optimization prob- 

lems and many iVP-Complete MOP test functions are used. For example, a group of 

Japanese researchers focus on the use of fuzzy logic and MOEAs in solving Multiobjective 

0-1 Programming problems (e.g., [173, 280, 302]). Several efforts investigate Multiob- 

jective Solid Transportation Problems [44, 168, 122, 198, 197]. Other traditional NP- 

Complete problems are also transformed into MOPs, including Multiobjective Flowshop 
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Table 5.5.     Possible Multiobjective iVP-Complete Functions 
TVP-Complete Problem Example 
0/1 Knapsack - Bin Packing Max profit; Min weight 
Traveling Salesperson Min energy, time, and/or distance; 

Max expansion 
Coloring Min number of colors, number of each 

color 
Set/Vertex Covering Min total cost, over-covering 
Maximum   Independent    Set 
(Clique) 

Max set size; Min geometry 

Vehicle Routing Min time, energy, and/or geometry 
Scheduling Min time, missed deadlines, waiting 

time, resource use 
Layout Min space, overlap, costs 
iVP-Complete Problem Com- 
binations 

Vehicle scheduling and routing 

Scheduling [164], Multiobjective Job Shop Scheduling [199], and Multiobjective Knapsack 

Problems [280, 358, 359]. 

Thus, we should consider the use of combinatorial MOPs in any proposed MOEA test 

suite. On the one hand, EAs often employ specialized representations and operators when 

solving these real-world problems which usually prevents a general comparison between 

various MOEA implementations. On the other hand, these problems' inherent difficulty 

should present desired algorithmic challenges and complement other test suite MOPs. 

Table 5.5 outlines possible iVP-Complete MOPs for inclusion. However, no known solution 

databases such as TSPLIB [271], MP-Testdata [360], or OR Library [24] exist for these NP- 

Complete MOPs. 

Finally, real-world applications should be considered for inclusion in any compre- 

hensive MOEA test suite. These MOPs may be numeric, non-numeric, or both, and are 

probably more constrained (in terms of resources) than the problems we have considered 

here. We note that many real-world applications require extensive fitness function (e.g., 

computational fluid dynamics or computational electromagnetic) software requiring data 

interchange and mapping (c.f., [210, 170, 41, 248, 318, 240, 262]). 
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5.5    Summary 

In the tradition of providing test suites for evolutionary algorithms we propose an 

extensive list of specific MOEA test functions. The development of this list is based upon 

accepted and historic EA test suite guidelines. Specific MOEA test suites can evolve 

from this proposed list based upon individual research objectives and problem domain 

characteristic classifications. With a generic MOEA test suite, researchers can compare 

their multiobjective numeric and combinatorial optimization problem results (regarding 

effectiveness and efficiency) with others, over a spectrum of MOEA instantiations. Using 

our test suite functions MOEA comparisons can be made more precise and their results 

more informative. We describe such an effort in the next chapter. 
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VI.   MOEA Experiments 

"Wesley, under Point Four, we'll have to close all research departments, experimental labo- 
ratories, scientific foundations, and all the rest of the institutions ofthat kind. They'll have 
to be forbidden." 
... Close all those damn research laboratories - and the sooner, the better." 
...  "The State Science Institute, too?" asked Fred Kinnan. 
"Oh, no!"   said Mouch.   "That's different.   That's government.   Besides, it's a non-profit 
institution. And it will be sufficient to take care of all scientific progress." 
"Quite sufficient," said Dr. Ferris. 

Ayn Rand, Atlas Shrugged 

6.1    Introduction 

The careful design of MOEA experiments should draw heavily from outlines pre- 

sented by Barr et al. [23] and Jackson et al. [166]. These articles discuss computational 

experiment design for heuristic methods, providing guidelines for reporting results and en- 

suring their reproducibility. Specifically, they suggest a well-designed experiment follows 

these steps: (1) Define experimental goals; (2) Choose measures of performance (metrics); 

(3) Design and execute the experiment; (4) Analyze data and draw conclusions; and (5) 

Report experimental results. 

The authors also note metrics usually fall into one of four categories: (1) Efficiency 

(measuring computational effort to obtain solutions, e.g., CPU time, number of evalu- 

ations/iterations), and Effectiveness (measuring the accuracy of obtained solutions); (2) 

Robustness (measuring how well the code recovers from improper input); (3) Reliabil- 

ity (measuring how large a class of problems the code can solve); and (4) Ease of use 

(measuring the amount of effort required to use the software). 

Following these guidelines, the reasons for and goals of these experiments are pre- 

sented in Section 6.2. The experimental design and performance metrics are described 

within the methodology proposed in Section 6.3. Experimental results and analyses are 

then presented in Chapter VII. 

6-1 



6.2 MOEA Experiments: Motivation and Objectives 

The major goal of these experiments is to compare well-engineered MOEAs in terms 

of effectiveness and efficiency as regards carefully selected test problems from the same class. 

Jackson et al. [166] imply this should suffice to show MOEA feasibility and promise. We 

are not claiming that MOEAs are the only algorithms able to solve these test problems 

efficiently and effectively, but wish to see if one MOEA performs "better" than another over 

this problem domain class, and if so determine why. If all MOEAs perform equally well, we 

also wish to determine why, as that situation implies MOEA implementation choice may 

not be crucial. Other interesting observations may also arise during experiment execution 

and result analysis. 

The first selected experimental MOEA is the MOMGA, discussed in detail in Chap- 

ter IV. It is a new, unique, and innovative extension of a single-objective EA incorporating 

mechanisms that should theoretically result in effective performance. The other experimen- 

tal MOEAs (described in Section 6.3.2) are also based on similar theoretical mechanisms. 

These MOEAs have been tested on various numeric problems and used in many scientific 

and engineering applications. Examples prove nothing but these MOEAs have a good 

track record. Thus, we choose to compare these MOEAs' performance in solving carefully 

selected MOPs based on appropriately defined metrics. 

We wish to report relevant quantitative MOEA performance based on appropriate 

experiments. Almost all comparisons cited in the current literature visually compare algo- 

rithmic results. As experimental numeric MOPs' Ptrae and PFirue are often not known (and 

almost never presented) these conclusions are then relative. The methodology described 

in the next section gives a basis for absolute conclusions regarding MOEA performance. 

Finally, the last experimental goal is determining how well the test problems and proposed 

metrics capture and report essential MOP and MOEA characteristics and performance. 

6.3 Experimental Methodology 

Having investigated the MOP and MOEA domains in Chapters II and III, meaning- 

ful MOEA experiments may now be conducted. Although test suite functions do provide 
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a common basis for MOEA comparisons, results are empirical unless the global optima 

are known. We again note that finding a general MOP's Pareto optimal solution set is 

iVP-Complete [17:pg. 56]. However, there is a way to determine Ptruefoi certain prob- 

lems! Teaming this data with appropriate metrics then allows desired quantitative MOEA 

comparisons. 

6.3.1 MOP Pirue Determination. When the real- (continuous) world is modeled 

(e.g., via objective functions) on a computer (a discrete machine), there is a fidelity loss be- 

tween the (possibly) continuous mathematical model and its discrete representation. Any 

formalized MOP being computationally solved suffers this fate. However, at a "standard- 

ized" computational resolution and representation, MOEA results can be quantitatively 

compared not only against each other but against certain MOPs' PFtne. Thus, whether or 

not these selected MOPs' PFirue is actually continuous or discrete is not an experimental 

concern, as the representable Ptnt and PFtr%e are fixed based on certain assumptions. 

6.3.1.1 Computational Grid. For purposes of these experiments we define 

a computational grid by placing an equidistantly spaced grid over decision variable space, 

allowing a uniform sampling of possible solutions. Each grid intersection point (computable 

solution) is then assigned successive numbers using a binary representation. For example, 

given a fixed length binary string, decision variable values are determined by mapping the 

binary (sub)string to an integer int and then solving the following for each xf. 

int * (u — I) , 
Xi = l+ 2n_1 > (6-1) 

where / and u correspond to the lower and upper decision variable bounds and n is the 

length of the binary string (for each a;,-). For example, given the binary string 1011100001, 

xi represented by the first three bits and x2 by the last seven, and upper and lower bounds 

for both variables set at 4.0 and -4.0 respectively, int for x\ = 5 and x\ = 1.714, while int 

for X2 = 97 and x2 = 2.110. 

EA binary encodings have identified shortfalls (e.g., Hamming cliffs [17:pg. 229]) 

so other encodings are often used. Although restricting MOEA genetic representation to 
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binary strings may result in less effective results it does allow for the desired standard 

comparison between MOEAs. If one algorithm uses real-valued genes its computational 

grid's "fidelity" is much finer, giving it a search advantage because it is able to "reach" 

more discrete points in the solution space. Additionally, different computational platforms 

may allow different resolutions (i.e., different e values - the smallest computable difference 

between 1 and the next smallest value) and different numbers of distinct values (i.e., how 

many distinct numbers can be computed). 

Thus, even though a binary representation restricts a search space's size it allows for 

a quantitative MOEA comparison, determination of an MOP's PFtrUe (at some resolution), 

and an enumeration method for deterministically searching a solution space (see the next 

section). The underlying resolution may be increased/decreased as desired, at least up to 

some point where computation becomes impractical or intractable. This methodology is 

designed for experimentation and used to make judgments about proposed MOEAs and 

their implementations. 

6.3.1.2 Search Space Enumeration. Our enumerative search concept is in 

part due to a paper suggesting that exhaustive deterministic enumeration may be the 

only viable approach to solving irregular or chaotic problems [235]. Its authors propose 

harnessing ever-expanding computational capability to obtain the desired solutions. We 

constructed such a program executing on parallel high-powered computers whose purpose 

is to find Ptrue and PFtrue for several numeric MOPs. The resulting sets are still only a 

discrete representation of their continuous counterparts, but are the "best possible" at a 

given computational resolution. 

The IBM SP computers at both the Aeronautical Systems Center's Major Shared 

Resource Center (ASC MSRC) and the U. S. Army Corps of Engineers Waterways Ex- 

periment Station's (CEWES) MSRC are used to deterministically enumerate all possible 

solutions for a given MOP at a given computational resolution as previously defined.1 

1 Developmental work was performed on a Sun Network of Workstations (NOWs). The program uses 64- 
bit accuracy and currently executes on NOWs, Silicon Graphics Origin 2000 and Power Challenge systems, 
and the IBM SP-2. 
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The program is written in "C" and uses the Message Passing Interface (MPI) to dis- 

tribute function evaluations among many processors. A parallel implementation is selected 

to efficiently process large solution spaces, e.g., 224 and larger. For a given MOP, each pro- 

cessor evaluates some subset of solutions and stores the resultant Pareto optimal solutions 

and their corresponding nondominated vectors on disk. Noting that Pareto optimality 

places a partial ordering on the search space, combining the separate solutions/vectors 

from different processors and again comparing the vectors results in Ptr%e at that particular 

computational resolution. Figure 6.1 illustrates this process; P\om\ is the Pareto optimal 

set as regards the solutions evaluated by each processor. Program timing and processor 

loadings may also be recorded to determine problem scaling. This program easily "solves" 

bi- and tri-objective MOPs of size 224 — 226 using 32 or more processors on the SP-2. 

Using the Ptrue database various MOEA results may be compared hot only against 

each other, but also against the true MOP optimum. However, these MOEAs must use 

a binary encoding and mapping as explained in Section 6.3.1.1. At least for selected 

MOPs a true quantitative comparison is then possible. This methodology allows absolute 

performance observations. 
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Figure 6.1.     Deterministic Enumeration Process 

6.3.2   MOEA Test Algorithms.       Four MOEAs were selected for testing.  These 

algorithms and their original raison d'etre are: 

1. MOGA. Implemented by Fonseca and Fleming [114]. Used to explore incorporation 

of decision maker goals and priorities in the multiobjective search process. 
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2. MOMGA. Implemented by Van Veldhuizen and Lamont (see Chapter IV). Used to 

explore use of BBs in constructing MOP solutions where BB desirability may differ 

with respect to the k functions. 

3. NPGA. Implemented by Horn et al. [154]. Used to explore benefits of providing 

Pknown &s input to a Multi Attribute Utility Analysis [177] process. 

4. NSGA. Implemented by Srinivas and Deb [306]. Used to explore Goldberg's Pareto 

ranking [126] and preventing bias in exploring the Pareto front. 

Rather than describe these algorithms in detail the reader is referred to the literature 

(for the MOGA [114], NPGA [154], and NSGA [306]) and to Chapter IV. However, we 

note here that these algorithms were selected because they specifically incorporate what 

appear to be key theoretical problem/algorithm domain aspects such as Pareto ranking, 

niching, and fitness sharing (see Section 3.3.2). Other researchers appear to share these 

thoughts as the MOGA, NPGA, and NSGA (or variants thereof) are the literature's most 

cited and imitated (see Section 3.4). 

The MOGA, NPGA, and NSGA are based on "traditional" GAs; the MOMGA 

is based on the mGA and can be considered non-standard. However, the conceptual 

evolutionary process modeled by each algorithm is the same and gives the basis for their 

direct comparison. Table 6.1 lists each MOEAs' key characteristics which are explained 

in the next section. Figures 6.2 through 6.4 show the pseudocode for the MOGA, NPGA, 

and NSGA implementations; MOMGA pseudocode is shown in Figure 4.9 in Section 4.6. 

We consider three other algorithms for inclusion in these experiments. These are 

random search, VEGA, and SPEA. As several MOEA comparisons have shown random 

search performs much worse than other tested algorithms (see Table A.15 in Section A.5.1) 

we choose not to include it. VEGA is excluded because it is biased towards solutions 

performing "well" in only one dimension [152], and because several efforts indicate VEGA 

performs "worse" than their proposed MOEA (see Section A.5.1). Finally, we choose not to 

include SPEA because of its explicit incorporation of a secondary population in the fitness 

assignment process [358] which may unfairly impact performance (see Section 3.3.3). Of 

course, these and other alternative MOEAs may be considered in later experiments. 
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Table 6.1.     Key Experimental MOEA Characteristics 
Algorithm EVOPs Fitness 

Assignment 
Sharing and 
Niching 

Population 

MOGA Crossover 
and        Muta- 
tion (pc   =   1, 

P™ ~ 0.042) 

Linear   interpola- 
tion   using   Fon- 
seca's [108] Pareto 
ranking 

Phenotypic 
(ftshare - Fitness) 

Randomly 
initialized; 
N = 50 

MOMGA "Cut           and 
splice" 
(pcut = 0.02, 
P splice — ij 

Tournament 
{•'dorn = "J 

Phenotypic 
(.Vshare -        Dom- 
ination) 

Determin- 
istically 
initialized; 
N = 100 

NPGA Crossover 
and         Muta- 
tion (pc   =   1, 

Pm - 0.042) 

Tournament 
(tdom = 5J 

Phenotypic 
{vshare -        Dom- 
ination) 

Randomly 
initialized; 
N = 50 

NSGA Crossover 
and        Muta- 
tion (pc   =   1, 

Pm - 0.042) 

"Dummy"   fitness 
using            Gold- 
berg's             [126] 
Pareto ranking 

Phenotypic 
(ashare - Fitness) 

Randomly 
initialized; 
JV = 50 

Although the NFL theorems [346] show there is no "best" EA, certain EAs have been 

experimentally shown to be more likely effective than others for some real-world problems. 

Nothing like this has yet been shown for MOEAs. Additionally, no studies have been 

performed showing which parameters (or parameter values) are key to good performance. 

In the next section many crucial MOEA components are described in the context of the 

parameter settings used in these experiments. 

6.3.3 Key Algorithmic Parameters. Many EA experiments vary key algorithmic 

parameters in an attempt to determine the most effective and efficient implementation for 

a particular problem instantiation or class. A parameter analysis investigating effects of 

differing parameter values is beyond the scope of these experiments. These experiments' 

purpose is to determine general MOEA performance and to explore the algorithm domain, 

not to "tune" MOEAs for good performance on some problem class. These algorithms are 

then executed with default parameter values as reported in the literature, implementing 

each MOEA "out of the box" as it were. However, using the term "default" is somewhat 

of a misnomer as no MOEA parameter value studies are known. 
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Initialize Population 
Evaluate Objective Values 
Assign Rank Based on Pareto Dominance 
Compute Niche Count 
Assign Linearly Scaled Fitness 
Assign Shared Fitness 
For i = 1 to G 

Selection via Stochastic Universal Sampling 
Single Point Crossover 
Mutation 
Evaluate Objective Values 
Assign Rank Based on Pareto Dominance 
Compute Niche Count 
Assign Linearly Scaled Fitness 
Assign Shared Fitness 

End Loop 

Figure 6.2.     MOGA Pseudocode 

The MOEA literature typically reports using default single-objective EA parameter 

values, except perhaps for population size. Because MOEAs track a set of solutions, and 

because more objectives imply the possibility of more Pareto optimal solutions (by defi- 

nition when using a discrete representation), researchers sometimes enlarge the MOEA's 

generational population. We again note that these experiments' purpose is MOEA perfor- 

mance comparison and not determination of ideal parameter settings for some (class of) 

MOPs. If possible, key MOEA parameter values are then kept identical. A discussion of 

these key parameters follows. 

6.3.3.1 Population Initialization. The MOGA, NPGA, and NSGA all use 

a random population initialization scheme. That is, given some genetic representation, all 

solutions in the initial generational population are uniformly selected from the solution 

space. The MOMGA uses a deterministic scheme. For each era (signified by k) the 

MOMGA generates all possible BBs of size k. Thus, its initial population composition is 

always known. However, the initial competitive templates are randomly generated. 

6.3.3.2 Mating Restriction. As discussed in Section 3.3.2.4, mating re- 

striction has both its proponents and opponents. Existing empirical experimental results 
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Initialize Population 
Evaluate Objective Values 
For i = 1 to G 

Specialized Binary Tournament Selection 
Only Candidate 1 Dominated: Select Candidate 2 
Only Candidate 2 Dominated: Select Candidate 1 
Both Candidates Dominated or Both Not Dominated: 

Perform Specialized Fitness Sharing 
Return Candidate with Lower Niche count 

Single Point Crossover 
Mutation 
Evaluate Objective Values 

End Loop 

Figure 6.3.     NPGA Pseudocode 

sometimes indicate it is necessary for good performance, and at other times various MOEA 

implementations seem to operate well without it. These empirical results indicate the NFL 

theorems are alive and well [346]. As incorporating mating restriction in some experimen- 

tal software required major code modifications, and because of its uncertain usefulness in 

the MOP domain, mating restriction is not incorporated in any experimental MOEA. 

6.3.3.3 Fitness Assignment. The MOMGA and NPGA employ tourna- 

ment selection and so require no specific solution fitness manipulation besides those values 

returned by the MOP fitness function. The MOGA first evaluates all solutions, then as- 

signs fitness by sorting the population on rank ('0' being the best and 'iV' the worst - see 

Equation 3.1 in Section 3.3.2.2). Fitness is assigned linearly to each ordered solution; final 

fitness is determined by averaging the fitnesses for identically ranked solutions and then 

performing fitness sharing. The NSGA also evaluates and sorts the population by rank. 

However, it assigns some large "dummy" fitness to all solutions of the best rank. After 

fitness sharing it assigns a "dummy" fitness smaller than the current lowest fitness to those 

solutions of the next best rank, and so on. We note here that all experimental MOEAs 

employ fitness scaling as each objective dimension's magnitude may be vastly different. 

6.3.3.4 Fitness Sharing. All experimental MOEAs incorporate phenotypic- 

based sharing using the "distance" between objective vectors for consistency.   For the 
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Initialize Population 
Evaluate Objective Values 
Assign Rank Based on Pareto Dominance in Each "Wave" 
Compute Niche Count 
Assign Shared Fitness 
For i = 1 to G 

Selection via Stochastic Universal Sampling 
Single Point Crossover 
Mutation 
Evaluate Objective Values 
Assign Rank Based on Pareto Dominance in Each "Wave" 
Compute Niche Count 
Assign Shared Fitness 

End Loop 

Figure 6.4.     NSGA Pseudocode 

MOGA and NSGA, (Tskare is computed and a sharing matrix formed via the standard 

sharing equation [126]. Finally, fitness sharing occurs only between solutions with the 

same rank [114, 306]. 

The NPGA and MOMGA use a slightly different sharing scheme. As explained in 

Section 4.5.3, two solutions undergoing tournament selection are actually compared against 

those in a small comparison set. Sharing occurs only if both solutions are dominated or 

nondominated with respect to the comparison set. A ashare value is used, however, the 

associated niche count is simply the number of vectors within askart in phenotypic space 

rather than a degradation value applied against unshared fitness. The solution with the 

smaller niche count is selected for inclusion in the next generation. Horn [155] labels this 

equivalence class sharing. An identical scheme is implemented in the MOMGA as it also 

uses tournament selection. Per Horn's recommendation, continuously updated sharing is 

used by both the NPGA and the MOMGA due to the observation that chaotic niching 

behavior may result when combining fitness sharing and tournament selection [154]. 

askare represents how "close" two individuals must be in order to decrease each other's 

fitness. This value commonly depends on the number of optima in the search space. As 

this number is generally unknown, and because PFine 's shape within objective space is 
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also unknown, we assign <Jskare 's value using Fonseca's suggested method [114]: 

N _  Uj=l(Ai + ° share) ~ U.j=l Ai ,g ^ 

(Tk. share 

where N is the number of individuals in the population, At- is the difference between the 

maximum and minimum objective values in dimension i, and k is the number of distinct 

MOP objectives. As all variables but one are known ashare can be easily computed. For 

example, if k — 2, Ai = A2 = 1, and N = 50, the above equation simplifies to: 

<Tshare =     #+_ ^  = 0-041. (6.3) 

This appears a reasonable way to obtain ash0irt values, although Horn also presents equa- 

tions bounding PFxr%t 's possible size [154] but leaves the user to choose specific o-share val- 

ues. Finally, as each MOP's objective values may span widely disparate ranges all objective 

values are scaled before ashare is computed. This action is meant to prevent unintentional 

niching bias. 

6.3.3.5 Representation and EVOPs. As described in Section 6.3.1.1, the 

experimental methodology requires each MOEA to use a binary representation. Thus, all 

MOEAs use an /-bit (/ = 24) string for each solution and identical minimum/maximum 

values in each decision variable dimension. Using this scheme ensures identical "reacha- 

bility" of the test algorithms for a given MOP. The bit length may be increased in later 

experiments to examine larger search spaces. 

However, the MOEAs employ different binary- to real-value mappings. The MOMGA, 

NPGA, and deterministic enumeration program use the mapping shown in Equation 6.1; 

the MOGA and NSGA execute as part of a larger program (see Section 6.3.5) that uses 

a different mapping. This may result in differing mapped values due to truncation or 

round-off errors as the schemes are implemented. 

The mGA's "cut and splice" EVOPs' effect (when both are used) is intended to be 

similar to recombination's [130]. The MOMGA used mGA default parameters for these 

operators, namely pcut = 0.2 (only one cut allowed per string) and pspuce = 1.0. There is 
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not yet a "default" MOEA crossover rate but past experiments used crossover probabilities 

in the range pc G [0.7,1.0] [154, 113, 306]. Thus, the other experimental MOEAs used 

single-point crossover with pc = 1.0. All but the MOMGA used a mutation rate of pm = j 

where / is the number of binary digits. The MOMGA did not employ mutation (i.e., 

pm = 0). As in the original mGA presentation [130], this results in the most stringent 

possible testing. As mutation is not available to provide diversity and "recreate" BBs, 

losing a BB from the population means it is gone forever. 

6.3.3.6 Termination, Solution Evaluations, and Population Size. When 

should an MOEA stop executing? The easy answer is after convergence occurs - but when 

is that? Some "best guess" is normally made and appropriate termination flags set. We do 

the same in this experimental series and terminate search based on the number of solution 

evaluations. 

Like Goldberg et al. in their early mGA experiments [130], we compare experimental 

MOEA results derived after an identical number of solution evaluations are performed, 

using that factor as a measure of common computational effort. However, the number 

of executed solution evaluations differs between MOMGA runs (even those solving the 

same MOP) because of internal parameters dynamically governing its operation. In these 

experiments, the MOMGA is set to execute for three eras and to contain 100 individuals 

in each juxtapositional population. These values are the mGA defaults, reflecting our 

desire to execute each experimental MOEA "out of the box" and because Goldberg et al. 

indicate the juxtapositional generation size should be "about" that of a usual GA [130]. 

The MOMGA is set to execute a maximum of 20 juxtapositional generations in each era 

and its execution is terminated before the total number of solution evaluations for a run 

exceeds 65,536 (216). Thus, the total fraction of explored search space is then bounded 

above by ^i = 0.39%. Historically, EAs often execute at most tens of thousands of fitness 

evaluations and this experimental limit is within that range. As it explores only a small 

fraction of the search space an MOEA's effectiveness should be readily apparent in how 

well its results (Pknown and PFkn0Wn ) compare to Ptr%e and PFirue (if known). 
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Thus, for all test MOPs, the MOMGA was executed first and the number of executed 

solution evaluations per run determined. The other MOEAs (each with population size 

N = 50) were then set to execute almost the same number of evaluations (N multiplied 

by the number of generations), ensuring a very nearly equivalent computational effort for 

each tested MOEA. 

The literature sometimes indicates that more objectives imply a larger generational 

population size is necessary. However, as these experiments involve only bi- and tri- 

objective MOPs, population size is left at the suggested single-objective GA default size 

of 50 [17:pg. 123]. The exception was the MOMGA, instead using the mGA default 

population size of 100 individuals per juxtapositional generation. We again note these ex- 

periments' purpose is to explore MOEA performance and not to determine ideal parameter 

settings over the test functions. 

6.3.4 MOEA Experimental Metrics. What metrics might adequately measure 

an MOEA's results or allow meaningful comparisons of specific MOEA implementations? 

Appropriate metrics must be selected upon which to base MOEA performance claims, and 

as the literature offers few quantitative MOEA metrics, proposed metrics must be carefully 

defined to be useful. Additionally, no single metric can entirely capture total MOEA 

performance, as some measure algorithm effectiveness and others efficiency. Temporal 

effectiveness and efficiency may also be judged, e.g., measuring an MOEA's progress each 

generation. All may be considered when judging an MOEA. Following are possible metrics 

developed for use in analyzing these experiments, but they should not be considered a 

complete list. 

The metrics identified in this section measure performance in the phenotype domain. 

Whereas Benson and Sayin indicate many OR researchers attempt to generate Ptrue (and 

thus implicitly measure performance in genotype space) [28], MOEA researchers have 

mainly focused on generating PFir%t (and thus measure performance in phenotype space). 

As there is a direct correspondence between solutions in Ptne and vectors in PFtTUe one 

method may not be "better" than another. However, we do note that multiple solutions 

may map to an identical vector. 
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Although here described in terms of measuring final MOEA performance, many of 

these metrics may also be used to track performance of generational populations. This then 

indicates performance during execution (e.g., rate of convergence to the MOEA optimum) 

in addition to an overall performance metric. Although presented using two-objective 

examples, these metrics may be extended to MOPs with an arbitrary number of objective 

dimensions. 

(1.5,10) 

i"-"}""-* 

Example ft-f2 Plot 

(2-5,9) 

(2.8) 

(3,6) 

(4,4) 
:■_&■■■■ 

PF* 

(5,4) 

Figure 6.5.     PFknown jPFiT%t Example 

6.3.4-1    Error Ratio. An MOEA reports a finite number of vectors in 

PFknown which are or are not members of PFtrue . If they are not members of PFirne the 

MOEA has erred or perhaps not converged. This metric is mathematically represented by: 

E A £-/i=l e' 
n 

(6.4) 

where n is the number of vectors in PFknown and 

0 if vector i, i = (1,... , n) G PFtrue , 

1 otherwise. 
(6.5) 

6-14 



For example, E — 0 indicates every vector reported by the MOEA in PFknown is actually 

in PFtrue ; E = 1 indicates that none are. The example in Figure 6.5 has E = |. We also 

note a similar metric [359, 358] measuring the percentage of solutions in some set (e.g., 

Pknown ) dominated by another solution set's members (e.g., PtrUe )• 

6.3.4-2 Generational Distance. Used in other experiments [325] this metric 

is a value representing how "far" PFknown is from PFtrue and is defined as: 

G ± (^"=1 dWP , (6.6) 
n 

where n is the number of vectors in PFknown , P = 2, and d{ is the Euclidean distance (in 

objective space) between each vector and the nearest member of PFtrue. A result of 0 

indicates PF%r%t = PFknown ; anY other value indicates PFknown deviates from PFirue. The 

example in Figure 6.5 has dx = ^(2.5 - 2)2 + (9 - 8)2, d2 = -^(3 - 3)2 + (6 - 6)2, and 

d3 = ^(5 - 4)2 + (4 - 4)2, and G = Vl.HS2 + 02 + l2/3 = 0.5. 

Schott proposes a "7-Point" distance measure that is similar to our generational 

distance [292]. In his experiments neither Ptrue or PFtne are known, so he generates seven 

points (vectors) in objective space for comparison. Assuming a bi-objective minimization 

MOP and an (/i,/2) coordinate system with origin at (0,0), first determine the maximum 

value in each objective dimension. Two equidistantly spaced points are then computed 

between the origin and each objective's maximum value (on the objective axis). The 

"full" measure is then created by averaging the Euclidean distances from each of the seven 

axis points to the member of PFknown closest to each point. Given a general bi-objective 

minimization MOP F(x) = (fi(x),f2(x)), the seven points are: 

{(0,(max/2(f))/3), (0,2 * (max/2(f))/3), (0, (max/2(f))), (0,0), 

((max/i(2))/3,0), (2* (max/i(s))/3,0), ((max/i(2)),0)}. (6.7) 

6.3.4-3 Maximum Pareto Front Error. It is difficult to measure how well 

some set of vectors compares to another. For example, in comparing PFknown to PF%rnt, 

one wishes to determine how far "apart" the two sets are and how well they conform 
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in shape. This metric determines a maximum error band which when considered with 

respect to PFknown , encompasses every vector in PFtme • Put another way, this is the 

largest minimum distance between each vector in PFknown and the corresponding closest 

vector in PFirue . This metric is defined as: 

ME = max(min | f{(x) - f{(x) |" + | f2{x) - f2\x) p)1/*, (6.8) 
3 « 

where i = 1,... , n\ and j — 1,... , n^ index vectors in PFknown and PFir%e respectively, 

and p = 2. A result of 0 indicates PFknown Q PFtme', any other value indicates at least 

one vector in PFknown is not in PFtr%e ■ The vectors in Figure 6.5's Pknown are 1.118,0, and 

1 units away from the closest vector in Ptr%t . Thus, ME = 1.118. 

6.3.4-4 Hyperarea and Ratio. Zitzler and Thiele propose an MOEA com- 

parative metric [359] which we term hyperarea. Hyperarea defines the area of objective 

value space covered by PFknown (i-e., the "area under the curve"). For example, a vec- 

tor in PFknown for a two-objective MOP defines a rectangle bounded by an origin and 

(fi(x), f2(x)). The union of all such rectangles' area defined by each vector in PFknown is 

then the comparative measure and is defined as: 

H = {\Jai\Vi€ PFknown}, (6.9) 
i 

where V{ is a nondominated vector in PFknown and a, is the hyperarea determined by the 

components of «,- and the origin. Using the Pareto fronts in Figure 6.5 as an example, the 

rectangle bounded by (0,0) and (4,4) has an area of 16 units. The rectangle bounded by 

(0,0) and (3,6) then contributes (3 * (6 — 4)) = 6 units to the measure, and so on. Thus, 

Ptrue 's# = 16+ 6 + 4 + 3 = 29 units2, and PFtrue 's H = 20 + 6 + 7.5 = 33.5 units2. 

Zitzler and Thiele do note that this metric may be misleading if PFknown is non- 

convex. They also implicitly assume the MOP's objective space origin coordinates are 

(0,... ,0), but this is not always the case. The vectors in PFknown can be translated to 

reflect a zero-centered origin, but as each objective's ranges may be radically different 

between MOPs, optimal H values may vary widely.   We thus also propose a hyperarea 
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ratio metric defined as: 

HR±^, (6.10) 

where E\ is the hyperarea of PFknown and E^ that of PFirue. In a minimization problem, 

this ratio is 1 if PFknown = PFtrue and greater than one if PFknown 's hyperarea is larger 

than PFtrue 's. The example in Figure 6.5 has an HR = ^ = 1.155. 

6.3.4-5 Spacing. We wish to measure the spread (distribution) of vectors 

throughout PFknown • The experimental MOEAs perform fitness sharing in an attempt 

to spread each generational population (PFcurrent (<)) evenly along the front. Because 

PFknown 's "beginning" and "end" are known, a suitably defined metric judges how well 

PFknown is distributed. Schott [292] proposes such a metric measuring the range (distance) 

variance of neighboring vectors in PFknown ■ Called spacing, he defines this metric as: 

S± 1 
1       n 

— 5>-*)a, (6.11) 
«+i 

where dj = minj(| f{(x) - f{(x) \ + \ f^x) - f2{x) |), i,j = 1,... ,n, d is the mean of all 

di, and n is the number of vectors in PFknown ■ A value of zero for this metric indicates all 

members of PFknown are equidistantly spaced. We again note (see Section 5.3.1) that the 

vectors composing PFtrue in objective space may not be uniformly spaced. The example 

in Figure 6.5 has an S = 0.25. 

Some MOPs (e.g., MOP3, MOP4, and MOP6) have PFtrue 's that are composed of 

two or more Pareto curves. Including the distance between the endpoints of two succes- 

sive curves may skew this metric. Thus, for MOPs with this characteristic, the distance 

corresponding to the "breaks" in the front are removed from the spacing computation. 

However, this metric may also then be applied to portions of PFknown in isolation (those 

of high interest). Srinivas and Deb [306] define a similar measure expressing how well an 

MOEA has distributed Pareto optimal solutions over a nondominated region (the Pareto 
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optimal set). This metric is defined as: 

3+1 
, 71 i       71 { 

= (£(^—^y)1/p, (6.i2) 

where q is the number of desired optimal points and the (g + l)-th subregion is the domi- 

nated region, n; is the actual number of individuals serving the ith subregion (niche) of the 

nondominated region, n; is the expected number of individuals serving the ith subregion 

of the nondominated region, p = 2, and of is the variance of individuals serving the ith 

subregion of the nondominated region. They show that if the distribution of points is ideal 

with rii number of points in the ith subregion, the performance measure i — 0. Thus, a low 

performance measure characterizes an algorithm with a good distribution capacity. This 

metric may be modified to measure the distribution of vectors within the Pareto front. In 

that case both metrics [S and t) then measure only uniformity of vector distribution and 

thus complement the generational distance and maximum Pareto front error metrics. 

6.3.4-6 Overall Nondominated Vector Generation and Ratio. The tested 

MOEAs add PCUrrent to Pknown each generation, possibly resulting in different cardinalities 

for Pknown • This metric then measures the total number of nondominated vectors found 

during MOEA execution and is defined as: 

ONVG 4| PFknown | . (6.13) 

Schott [292] uses this metric (although defined over the Pareto optimal set, i.e., | Pknown I)- 

Genotypically or phenotypically defining this metric is probably a matter of preference, 

but we again note multiple solutions may map to an identical vector, or put another way, 

I Pknown |>| PFknown \- Although counting the number of nondominated solutions gives 

some feeling for how effective the MOEA is in generating desired solutions, it does not 

reflect on how "far" from PFirue the vectors in PFknown are. Additionally, too few vectors 

and PFknown 's representation may be poor; too many vectors may overwhelm the DM. 

It is difficult to determine what good values for | ONVG \ might be.   PFknown 's 

cardinality may change at various computational resolutions as well as differing (perhaps 
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radically) between MOPs. Reporting the ratio of PFknown 's cardinality to the discretized 

Ptme 's gives some feeling for the number of nondominated vectors found versus how many 

exist to be found. This metric is then defined as: 

ONVGR ä ' ^known ' . (6.14) 
I ■* -L true | 

A value of 1 indicates the MOEA has found the same number of nondominated vectors 

as exists in PFirue. The example in Figure 6.5 has an ONVG = 3 and an ONVGR = 0.75. 

6.3.4-7   Progress Measure. Back defines a parameter used in assessing 

single-objective EA convergence velocity called a Progress Measure [17], which quantifies 

relative rather than absolute convergence improvement by: 

A 1_     / Jmaxxy) 

where fmax{i) is the best objective function value in the parent population at generation 

To account for the (possible) multiple solutions in Pknown we modify this definition 

to the following: 

RPäln^, (6.16) 

where G\ is the generational distance at generation 1, and Gy the distance at generation 

T. 

6.3.4-8    Generational Nondominated Vector Generation.     This metric tracks 

how many nondominated vectors are produced each MOEA generation and is defined as: 

GNVG ±\ PFeumnt(t) \ . (6.17) 

6.3-4-9   Nondominated Vector Addition.      As globally nondominated vectors 

are sought, one hopes to add new nondominated vectors (that may or may not dominate 
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existing vectors) to PFknown each generation. This metric is then defined as: 

NVA ^| PFknown(t) | - | PFknown(t - 1) | . (6.18) 

However, this metric may be misleading. A single vector added to PFknown (t) may 

dominate and thus remove several others. PFknown (t)'s size may also remain constant for 

several successive generations even if GNVG ^ 0. 

6.3.4-10 Additional MOEA Experimental Metrics. Although implemented 

in the phenotype domain several experimental metrics may also be defined in a genotypic 

fashion. For example, the error ratio, generational distance, spacing, and overall non- 

dominated vector generation metrics are valid when modified to reflect a genotypic basis. 

However, note that decision variable dimensionality may easily exceed the number of ob- 

jective dimensions, which may require further metric refinement. In addition, Schott uses 

three other metrics in his thesis effort [292]: cost function evaluations, clone proportion, 

and total clones identified. These measures are not relevant to the current experiments. 

This effort uses the number of function (solution) evaluations as a constant between 

MOEAs ensuring "equal" computational effort by each; Schott appears interested only in 

measuring the results of a single MOEA. We currently make no effort to identify clones 

(previously evaluated solutions) during execution. As shown in the next section these 

MOEAs execute quickly. When compared to many real-world MOPs, where each fitness 

evaluation may take from minutes to hours, it makes no sense to incorporate the overhead of 

clone identification within these experiments. Thomas' use of MOEAs in submarine stern 

design, where each individual's fitness evaluation took about 10 minutes, is a case where 

clone identification is more useful [318]. As no clones are identified in these experiments 

clone proportion is not considered. Later experiments can easily include these and other 

metrics. 

6.3.5 Computational Environment and Implementation. All MOEAs are exe- 

cuted on the same computational platform for consistency.   The host is a Sun Ultra 60 
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Workstation with dual 300 MHz processors and 512 MB RAM, running Solaris 2.5.1. Many 

other computational platforms would suffice but this high-end host offers exclusive access. 

The MOMGA and NPGA are extensions of existing algorithms and specific software 

(the mGA and SGA-C) from the Illinois Genetic Algorithms Laboratory (IlliGAL) [162]. 

The NPGA is the original code used by Horn in his MOEA research [154, 155]. Both 

the MOMGA and NPGA are written in "C" and are compiled using the Sun Workshop 

Compiler version C 4.2. Much of our associated research and related experimentation 

employs the GEATbx v2.0 for use with MATLAB [255]. This toolbox offers the user 

several "default" EA instantiations (e.g., real- or binary-valued GA, ES, EP) and excellent 

visualization output to aid in analysis. GEATbx requires only a limited amount of user 

effort to implement a specific EA. Thus, the MOGA and NSGA are written as self-contained 

"m-files" using other pre-defined toolbox routines. They were constructed using definitions 

given in the literature [114, 306]. These MOEAs are also executed on the Sun platform 

described previously but within the MATLAB 5.2 environment. 

Timing results are not of specific experimental concern. However, for all experimental 

MOPs, each MOEA run executes in a matter of minutes. Empirical observations indicate 

that the MOMGA and NPGA execute more quickly than the other MOEAs. This result 

is expected as the latter algorithms are executing via interpretation within the MATLAB 

environment while the former are compiled codes. Further issues are discussed in Sec- 

tion 7.3.2, but we note these MOEAs exhibit roughly the same computational complexity 

(see Tables 3.2 and 3.3). 

6.3.6   Experimental Test Suite MOPs. Several MOPs are substantiated and 

proposed for use in an MOEA test function suite (Section 5.4). For these experiments' 

test functions we select the following MOPs: MOP1, MOP2, MOP3, MOP4, and MOP6. 

These are all bi-objective MOPs and are validated in Section 5.4. 

6.4    Summary 

This chapter presents an experimental methodology for quantitatively comparing 

MOEA performance. After motivating the experiments, key methodology components are 
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discussed. The test algorithms and their parameter settings are presented in detail. Several 

appropriate metrics are proposed, classified, and analyzed, and example values derived. 

The chapter concludes by discussing the experimental computational environment and 

selected test problems. 
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VII.   MOEA Experiment Results and Analyses 

You know that I write slowly. This is chiefly because I am never satisfied until I have said 
as much as possible in a few words, and writing briefly takes far more time than writing at 
length. 

Karl Friedrich Gauss 

7.1 Introduction 

The purpose of these experiments is to compare well-engineered algorithms in terms 

of effectiveness as regards carefully selected test problems. We wish to determine selected 

MOEA performance over the MOP domain class, to evaluate the usefulness of proposed test 

functions and metrics, and to record other germane observations arising during experiment 

execution and result analysis. 

This chapter presents the experimental results derived from applying four MOEAs 

to the proposed MOEA test suite functions. Section 7.2 discusses the experimental results 

and statistical analyses for the test suite functions identified in Section 6.3.6. Section 7.3 

then presents more general observations about these and related experiments. 

7.2 MOEA Experiment Approach and Analyses 

Appropriate metrics should be selected for use in judging experimental results as 

concerning MOEA effectiveness (producing an acceptable result). Thus, specific effective- 

ness metrics are drawn from those discussed in Section 6.3.4 and listed in alphabetical 

order in Table 7.1. They are initially used to compare final MOEA results; in Section 7.3.4 

we discuss using these and/or other metrics to investigate an MOEA's efficiency (rate of 

convergence). These metrics are selected because they initially appear to be the most ap- 

propriate indicators of MOEA performance and thus provide a validated basis for MOEA 

comparison. 

All MOP test functions used are formulated as stated in Table 5.3 in Section 5.4; other 

experimental and algorithmic parameters are as discussed in Section 6.3.  For statistical 
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Table 7.1.     Selected MOEA Experimental Metrics 
Metric Desired Value 

Error Ratio (E) 0 
Generational Distance (G) 0 
Hyperarea Ratio (HR) 1 
Maximum Error (ME) 0 
Overall Nondominated Vector 
Generation (ONVG) 

> 1 (MOP Dependent) 

Overall Nondominated Vector 
Generation Ratio (ONVGR) 

1 (MOP Dependent) 

Spacing (S) 0 

comparison purposes, the four experimental MOEAs were each executed ten times for each 

MOP, providing a statistical sample with which to derive metric values. Each MOEA's 

results for each MOP are separately analyzed followed by a discussion of their performance 

across all tested MOPs. 

A figure containing seven individual graphs is presented for each MOP tested (all 

figures are located at the chapter's end for ease of comparative evaluation). Each graph's 

z-axis contains four entries corresponding to each MOEA. Each j/-axis is labeled with the 

graph's measured metric. Note that the y-axis scales may change between metrics and 

between MOPs, and that graphs (a) through (e) represent metrics where minimum values 

are desired, whereas graphs (f) and (g) reflect the opposite. For each graph, the metric's 

value for each MOEA run is represented by a dot ('.') above the appropriate algorithm 

name. The error bars for each algorithm are 2a in length (ß + a, \x — <r, with ß the mean 

and a the standard deviation). Additionally, Tables 7.3 and 7.4 (located at the chapter's 

end) give the mean and standard deviation for each MOEA-metric combination. 

7.2.1 Bi-Objective MOP Experimental Results. The following sections (7.2.1.1 

through 7.2.1.5) discuss MOEA results as applied to a single MOP. Section 7.2.2 presents 

observations about the experimental metrics and and MOP instantiations; Section 7.2.3 

then analyzes MOEA performance across the five bi-objective test suite functions (see 

Section 5.4). 
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7.2.1.1 M0P1 Experimental Results. Figure 7.17 presents MOPl's results 

for each metric and MOEA. We first observe that MOPl's (and the others) reported error 

ratio (Figure 7.17(a)) is somewhat misleading. As noted in Section 6.3.3.5, even identical 

binary- to real-value mapping algorithms may give slightly different results on different 

architectures due to truncation or round-off errors. PtrUe was computed on one architecture 

(an IBM SP-2); the four MOEAs executed on another (Sun Ultra 60). Additionally, the 

MOGA and NSGA use a different binary- to real-value mapping than the MOGA and 

NSGA, as they execute under GEAThx and use its predefined routines. As all computation 

and metric derivation is performed using double precision, MOEA experiments with MOPl 

clearly show these induced errors. 

Consider some Ptrue defined as containing all solutions within a given range, i.e., 

Ptmt = {x \ L < x < U}. Any solution lying within that range but not exactly identical to 

a computed Ptrue solution within it can differ only by some small e. Thus, if a computed 

Pareto optimal solution xc 6 Pknown is close but not identical to a solution xp G Ptrue, then 

xc G [xp - e, xp + e]. Determining an appropriate c value is difficult and we thus choose to 

evaluate the error metric as originally proposed. For MOPl, note that only the MOMGA 

returns vectors in PFtrue resulting in error ratios between 97% and 100%. 

The NPGA and NSGA in each run returned only one or two Pareto optimal solutions. 

Thus, the spacing metric (Figure 7.17(b)) is undefined in those cases because there are zero 

or one distances df, this situation is represented by a value of —1. The MOGA resulted 

in comparatively large spacing values (about 0.5 to 5) but this can be attributed to the 

large objective space and relatively few numbers of nondominated vectors in PFknown ■ All 

MOMGA runs resulted in spacing values between 0 and 0.5. 

The generational distance values (Figure 7.17(c)) for the NPGA (near 0 to 325) 

and NSGA (near 0 to 41) are quite large compared to the other MOEAs whose values 

are almost all near 0. This is again due to the large objective space. The same holds 

for the MOEAs' maximum error (Figure 7.17(d)). For MOPl these two metrics' results 

as regards the NPGA and NSGA are the same, as many runs returned only one Pareto 

optimal solution. The large objective space also skews the hyperarea ratio graph due to 
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the NPGA's large values (Figure 7.17(e)). The NSGA's values range between near 0 and 

300; MOGA and MOMGA values are between 0 and 4.5. 

The ONVGR values (Figure 7.17(f)) indicate only the number of PF\inown vectors 

presented versus those in PFtrue. This metric is driven by the ONVG metric (Fig- 

ure 7.17(g)). We see the MOMGA always returning more vectors (between 1 and 168) 

than the other MOEAs, and the MOGA (between 3 and 14) more than the other two. In 

all cases the NPGA and NSGA return only one or two vectors in PFknown . As all MOEAs 

explicitly seek nondominated vectors this is a somewhat surprising result, but one likely 

due to the large objective space. 

MOPl was thought to be an "easy" MOP for MOEAs to solve because its Pirueis 

convex and is formulated with only one decision variable. It appears this may not be the 

case, likely due to the very large MOP decision variable bounds resulting in a situation 

similar to that described in Section 5.3.1. As in that case, the difficulty in solving this con- 

tinuous MOP instantiation appears due to the extremely small number of computationally 

discrete points representing MOPl's Pirue. Although the current bounds may make MOPl 

too "hard", smaller bounds make it too "easy." The MOEA literature often presents MOPl 

as an example but all other known instantiations use a much smaller search space. For 

example, Schaffer's original proposition appears to use, and Horn does use, a search space 

bounded by {x | x G [-6,6]} [289, 154]; Norris and Crossley use {x \ x G [-10,10]} [237]. 

The largest implemented known bounds (besides ours) are {x \ x G [—1000,1000]} used 

by Srinivas and Deb [306]. MOPl's search space is two orders of magnitude larger, and 

leads to even larger metric results because the objective vectors may take on the following 

values: 

{(/i, h) | /i G [0, (105)2] A h G [0, (-105 - 2)2]}. (7.1) 

Analogous to executing several single-objective EAs and selecting the "best over- 

all fitness" found as the final answer, we conclude MOPl's analysis by combining each 

7-4 



MOEAs' run's results, i.e. 

10 

PFkn (jPFk nowni  5 (7.2) 
i=i 

where each PFknowni was returned by a single MOEA run. Thus, Figure 7.1 visually 

presents each MOEA's overall qualitative performance by plotting MOPl's PFtrue against 

each MOEA's respective overall PFkn0Wn • This figure implies that the MOGA performed 

"well" in solving MOPl and the MOMGA "very well", while the NPGA and NSGA did 

a poor job of "covering" PFiT%t. Table 7.5 (at the chapter's end) gives selected metric 

values for PFtrue and PFkn0wn ■ 

_™2 

.JN4 

Figure 7.1.     MOPl PFknown Comparison 

7.2.1.2 MOP2 Experimental Results. Figure 7.18 presents MOP2's results 

for each metric and MOEA. Only the NPGA returned any vectors in PFtrue, with error 

ratios ranging from 92% to 100% (Figure 7.18(a)). As regards spacing (Figure 7.18(b)), the 

7-5 



NSGA consistently returned vectors less evenly distributed (values from 0.08 to 0.12) while 

the other MOEAs' results were all below 0.03. The same trend is seen when considering 

generational distance (Figure 7.18(c)). The maximum error results (Figure 7.18(d)) show 

more consistency in the MOGA and NPGA cases (values from 0.015 to 0.04), while both 

the MOMGA and NSGA show result values ranging from 0.02 to 0.17. Several MOMGA 

and NSGA runs returned a vector farther away from PFirue than any found in all the 

MOGA and NPGA runs. 

The hyperarea ratios (Figure 7.18(e)) for all MOGA and NPGA runs are consistent 

and near 1.1, whereas the other two algorithms' results are more varied (from 1.01 to 

1.12). However, one NSGA run returns a HR value below one, which is possible because 

of MOP2's concave PFtTUe (see Section 6.3.4.4). Most notable about the last two metrics 

(Figures 7.18(f) and 7.18(g)) is that the NSGA again returns far fewer nondominated 

vectors than the other MOEAs. At most the NSGA returns 20 vectors in PFknown , while 

the other three MOEAs' return from 48 to 131. 

Figure 7.2 visually presents each MOEA's overall qualitative performance by plotting 

MOP2's PFir%e against each MOEA's respective overall PFknown • This figure implies all 

MOEAs except the NSGA performed "very well" in solving MOP2, although the NSGA's 

returned PFknown does "cover" and come close to most of PFirne. In general, the figure 

reflects each MOEA's spacing, generational distance, and ONVG results. However, the 

NSGA's "worse" results (considering those metrics) are easily seen. Its PFknown is not as 

evenly spaced, the vectors are not as close to PFirue, and they do not cover as much of 

PFirue as the other three. Table 7.5 (at the chapter's end) gives selected metric values for 

•** true and r£known • 

7.2.1.3 MOPS Experimental Results. Figure 7.19 presents MOP3's results 

for each metric and MOEA. Note that MOP3 is a maximization MOP. Here, the MOGA 

and NPGA return vector(s) in PFirue (Figure 7.19(a)); the NPGA does so consistently with 

error ratios ranging from 88% to 95%. All MOEAs' spacing results vary (Figure 7.19(b)), 

but like MOP1 this is expected due to a "larger" objective space. Values here range 

from near zero to 0.43.   Although several of the maximum errors are between 3 and 4 
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Figure 7.2.     M0P2 PFknown Comparison 

(Figure 7.19(d)), the much larger number of nondominated vectors returned by each MOEA 

(Figure 7.19(g)) means this metric has a smaller impact on the generational distance 

(Figure 7.19(c)) than it might otherwise have had. All MOEA runs resulted in "very 

good" hyperarea ratios (Figure 7.19(e)) near 1.001. However, note that as MOP3 is a 

maximization problem the metric is actually the inverse of that stated in Section 6.3.4.4. 

Because of Ptrue 's cardinality and ONVG values, all ONVGR results (Figure 7.19(f)) 

are nicely clustered. The MOEAs generally return a few hundred nondominated vectors, 

although the NSGA in most cases again returns far fewer. Figure 7.3 visually presents each 

MOEA's overall qualitative performance by plotting MOP3's PFirut against each MOEA's 

respective overall PFknown . This figure implies that all MOEAs performed "very well" in 

solving MOP3 as each MOEA's PFknown solidly covers PFine . Table 7.5 (at the chapter's 

end) gives selected metric values for PFtrue and PFknown • 
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Figure 7.3.     MOP3 PFknown Comparison 

7.2.1.4 MOP4 Experimental Results. Figure 7.20 presents MOP4's results 

for each metric and MOEA. Only the NPGA returned vectors in PFirue with all runs 

but one returning error ratios from 82% to 95% (Figure 7.20(a)). Spacing results (Fig- 

ure 7.20(b)) are fairly consistent between runs with all values between 0.1 and 0.7. As this 

MOP also encompasses a larger objective space the spacing, generational distance (Fig- 

ure 7.20(c)), and maximum error (Figure 7.20(d)) values appear reasonable, although the 

MOMGA and NSGA results show more variability between runs. This is also reflected in 

the hyperarea ratio (Figure 7.20(e)), where all but the NSGA have consistently returned 

vectors close to PFir%e . Several HR values are below one due to PF}.nown 's nonconvex 

shape. 

The ONVGR values (Figure 7.20(f)) are again driven by the number of nondom- 

inated vectors returned. All but the MOMGA have fairly well clustered ONVG values 

(Figure 7.20(g)) although the NSGA again returns far fewer. The NSGA returns at most 

23 vectors, while the other MOEAs return from 23 to 121. Figure 7.4 visually presents each 
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MOEA's overall qualitative performance by plotting MOP4's PFine against each MOEA's 

respective overall PFknown • This figure implies that the MOGA and NSGA did not perform 

"well" in solving MOP4. The MOMGA and NPGA are close to and do cover PFtrut; the 

MOGA and NSGA approximate PFtrue 's entire shape but their PFknown becomes farther 

from PFtrue (in distance) as one travels down and right. Table 7.5 (at the chapter's end) 

gives selected metric values for PFtrue and PFknown ■ Note that in this case, these values 

do not necessarily reflect what is concluded visually regarding MOEA performance. 
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Figure 7.4.     MOP4 PFknown Comparison 

7.2.1.5 MOP6 Experimental Results. Figure 7.21 presents MOP6's results 

for each metric and MOEA. The MOMGA always returns vectors in PFfrue while the 

NPGA often does (Figure 7.21(a)). These are the best values yet seen for the error ratio 

metric with the MOMGA's error ratio values ranging from 13% to 60%. Spacing results 

(Figure 7.21(b)) are fairly tight and below 0.1 for all algorithms but the NPGA, whose 

values range from 0.08 to 0.2. For MOP6, the MOGA and MOMGA return excellent val- 
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ues for generational distance and maximum error (Figures 7.21(c) and Figure 7.21(d)); the 

other two algorithms have a fairly large spread. The NPGA's and NSGA's generational 

distance values range from 0.01 to 0.55, and maximum error values from 0.2 to 9.4. This 

is also reflected by the hyperarea ratio results (Figure 7.21(e)), where we again see several 

HR values less than one. Finally, ONVGR (Figure 7.21(f)) and ONVG results (Fig- 

ure 7.21(g)) show the MOMGA returning significantly more nondominated vectors (max 

of 443), followed by the MOGA (max of 121), NSGA (max of 39), and the NPGA (max 

of 27). 

Figure 7.5 visually presents each MOEA's overall performance by plotting MOP6's 

PFtrue against each MOEA's respective overall PFinown ■ This figure implies that all 

MOEAs performed "well" in solving MOP6, although the NPGA and NSGA report a 

total of three vectors in PFknown that are not in PFtrue. Table 7.5 (at the chapter's end) 

gives selected metric values for PFtr%e and PFkn0Wn • 
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7.2.2 MOE A Experimental Metrics and MOPs. Although the experimental met- 

rics and MOPs were previously theoretically validated, these experiments highlight practi- 

cal implementation difficulties. The discussions in Sections 7.2.1.1 through 7.2.1.5 indicate 

some metrics appear not as valuable as others. For example, the error ratio metric reports 

values for only two of the four algorithms, thus preventing a general comparison. The 

maximum error metric shows how far one vector is from Ptrue > but the derived value does 

depend on the objective space's size within which distance is being measured. The hyper- 

area ratio metric sometimes gives misleading values (when applied to nonconvex Pareto 

fronts) and requires the inverse value of a maximization MOP. Finally, the ONVGR is 

largely dependent upon the number of vectors in PFirue. Therefore, using their current 

definitions, we consider spacing, generational distance, and ONVG as the most meaning- 

ful metrics for analysis. Although generational distance is dependent upon objective space 

size, spacing and ONVG values may not be as much so. 

Taken overall, the selected test suite MOPs appear useful in practice as well as in the- 

ory. We do make the following recommendations, however. Due to the difficulties discussed 

in Section 7.2.1.1 (primarily concerning metric values), further experiments incorporating 

MOP1 should use smaller decision variable bounds, e.g., {x \ x e [-1000,1000]}. MOP2 

should incorporate additional decision variables to introduce further dimensional complex- 

ity. MOP4 appears to be an "MOEA challenging" problem and should be investigated 

further. Incorporate additional decision variables in this MOP, also. 

7.2.3 Overall Experimental Statistical Analyses. Figures 7.17 - 7.21 imply each 

algorithm's observations are not normally distributed, and that the variance is noticeably 

different for different MOEAs. This data may not satisfy necessary assumptions for para- 

metric mean comparisons and we thus consider non-parametric statistical techniques for 

analyzing these experimental results. Based on the previous discussion we perform these 

tests only on the generational distance, ONVG, and spacing metrics. 

The Kruskal-Wallis IT-Test requires no assumptions about the probability distribu- 

tions being compared [213]. However, other assumptions must be satisfied in order to 

apply this test: that five or more measurements are in each sample and that the samples 
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are random and independent; and that the probability distributions from which the sam- 

ples are drawn are continuous. The results presented in Sections 7.2.1.1 - 7.2.1.5 meet this 

criteria so we test the following hypotheses: 

H0: The probability distributions of MOGA, MOMGA, NPGA, and NSGA 
results applied to MOPX are identical. 

Ha: At least two of the experimental MOEAs' result distributions differ. 

Table 7.6 (at the chapter's end) shows the Kruskal-Wallis IT-Test results for each 

MOP. The listed values are p-values, also called the observed significance levels, for the 

Kruskal-Wallis IT-Test. We reject the null hypothesis whenever p < a. Using a significance 

level a = 0.1, we in all cases see there is enough evidence to support the alternative 

hypothesis and conclude that for each MOP and recorded metrics, at least two MOEAs' 

results' distributions differ. 

This result allows use of the Wilcoxon rank sum test in comparing the results of 

MOEA "pairs," attempting now to determine which of a given two MOEAs does "better." 

This test assumes the sample of differences is randomly selected and that the probability 

distributions from which the sample of paired differences is drawn is continuous [213]. The 

results presented in Sections 7.2.1.1 - 7.2.1.5 meet this criteria so we test the following 

hypotheses: 

H0: The probability distributions of MOEAi and MOEA2 results applied 
to MOPX are identical. 

Ha: The probability distributions differ for the two MOEAs. 

There are six possible MOEA pairings: MOGA and MOMGA, MOGA and NPGA, 

MOGA and NSGA, MOMGA and NPGA, MOMGA and NSGA, and NPGA and NSGA. 

If c Wilcoxon rank sum tests are performed with an overall level of significance a, the Bon- 

nferroni technique [234] allows us to conduct each individual test at a level of significance 

a* = a/c [213]. For these tests we select an overall significance level a = 0.2 due to the 

fact we have only 10 data points per MOEA. Thus, a* = 0.2/6 = 0.03333. 
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Table 7.6 (at the chapter's end) also shows the Wilcoxon rank sum tests for each 

MOEA pair. The listed values are p-values, also called the observed significance levels, for 

the Wilcoxon rank sum test. We reject the null hypothesis whenever p < a*. These tests 

show the majority of pairwise MOEA comparisons provide enough evidence to support the 

alternative hypothesis, and we can thus conclude in those cases that there is a significant 

statistical difference between the MOEAs. We are then able to make conclusions about 

each MOEA's results as regards each of the three metrics. For each metric, a figure 

presenting mean metric performance (fi) is plotted for each MOP by algorithm with error 

bars as above. 

0.45 r 
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o 
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Figure 7.6.     Overall Generational Distance Performance 

7.2.3.1    Generational Distance Statistical Analysis. Figure 7.6 presents 

MOEA performance as regards generational distance. The MOP1 values for both the 

NPGA and NSGA were large enough to skew the results when viewed in this format - 

the graph truncates those two bars (their respective results are G « 66 and G « 11). 

The pairwise Wilcoxon rank sum tests indicate the following MOEA pairs' results are 

statistically insignificant: (MOP1) MOGA and MOMGA, MOGA and NSGA, NPGA 

and NSGA; (MOP2) MOGA and MOMGA, MOGA and NPGA, MOMGA and NPGA; 
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(MOP3) MOGA and NPGA, MOGA and NSGA, MOMGA and NSGA; and (MOP4) 

MOMGA and NPGA. All other results are statistically significant. 

This allows us to state that in general, when considering generational distance the 

MOGA, MOMGA, and NPGA gave better results than the NSGA over the test suite 

problems. This is certainly true for MOP4; the MOGA and MOMGA perform much 

better than the other two MOEAs on MOP6. 

0.6 

0.4 

0.2 

E MOP2 
MOP3 
MOP4 
MOP6 

t    I 

MOGA MOMGA NPGA 
Algorithm 

NSGA 

Figure 7.7.      Overall Spacing Performance 

7.2.3.2 Spacing Statistical Analysis. Figure 7.7 presents overall MOEA 

performance as regards spacing. This graph does not report MOP1 results as they are 

(possibly) somewhat misleading (see Section 7.2.1.1). The pairwise Wilcoxon rank sum 

tests indicate the following MOEA pairs' results are statistically insignificant: (MOP2) 

MOGA and MOMGA, MOGA and NPGA, MOMGA and NPGA; (MOP3) MOGA and 

NPGA, MOMGA and NPGA, MOMGA and NSGA; and (MOP4) MOMGA and NPGA. 

All other results are statistically significant. 
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This allows us to state that in general, when considering spacing the NSGA gave 

worse results over the test suite problems. This is certainly true for MOP2 and MOP4; 

the MOGA and MOMGA perform much better than the other two MOEAs on MOP6. 

MOGA MOMGA NPGA 
Algorithm 

NSGA 

Figure 7.8.      Overall ONVG Performance 

7.2.3.S ONVG Statistical Analysis. Figure 7.8 presents overall MOEA 

performance as regards ONVG. The pairwise Wilcoxon rank sum tests indicate the fol- 

lowing MOEA pairs' results are statistically insignificant: (MOP1) MOGA and MOMGA, 

NPGA and NSGA; (MOP2) MOGA and MOMGA, MOGA and NPGA, MOMGA and 

NPGA; (MOP3) MOGA and NPGA; and (MOP4) MOGA and MOMGA, MOMGA and 

NPGA. All other results are statistically significant. 

This allows us to state that in general, when considering ONVG the NSGA again 

gave worse results over the test suite problems. Disregarding MOP1 allows us to state 

the these three algorithms always outperformed the NSGA. This is a surprising result. Al- 

though sometimes performing worse (when considering spacing and generational distance), 

the NSGA generally returned values "close" to the other algorithms. In this case the NSGA 

consistently returns fewer (often less than half) the number of nondominated vectors than 
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the other algorithms. We highlight this result as we are attempting to provide a DM with 

a number of choices represented by the nondominated vectors composing PF}.nown . 

1.3   MOE A Experiment Observations 

A number of related experiments are executed in support of those analyzed in this 

chapter. Selected results and observations gleaned through the experimental process are 

reported in this section. 
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Figure 7.9.      MOP7 Metrics 

7.3.1 MOP7 Experimental Results. Figure 7.9 presents MOP7's results for three 

MOEAs as regards three metrics. MOP7 was selected as it is a tri-objective MOP, il- 

lustrating that MOEAs and experimental metrics can be extended to MOPs with more 

objectives. However, as the NPGA code used in these experiments is currently limited to 

two objectives, it was not used in solving MOP7. 

Figures 7.9(a) and Figure 7.9(b) imply that MOP7's objective space is quite large. It 

also appears that the MOMGA and NSGA performed better than the MOGA as concerning 

spacing and generational distance, although further statistical analysis is necessary to state 
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that with finality. As the scale in Figure 7.9(b) is quite large, we note that the MOMGA's 

results range from nearly 0 to about 1.07 and the NSGA's from 0.07 to about 20. The 

MOEAs in general return fewer nondominated vectors than in the other MOP experiments 

(Figure 7.9(c)). 

Figure 7.10 visually presents each MOEA's overall qualitative performance by plotting 

MOP7's PFirue against each MOEA's respective overall PFknown ■ This figure implies that 

the MOMGA performed "well" in solving MOP7 and the others did not. Table 7.5 (at the 

chapter's end) gives selected metric values for PFirue and PFknown • 

x10 

10, 

co 5 

x10 

f2  -17   0        f. 

Figure 7.10.      MOP7 PFknown Comparison 

7.3.2 Experimental Timing Analysis. Section 6.3.5 intimates that the MOMGA 

and NPGA execute more quickly than the MOGA and NSGA. Although probably still true, 

further analysis determines the primary reason behind these observations. As previously 

indicated, the MOGA and NSGA are implemented within a MATLAB toolbox.   Part 
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Figure 7.11.     MOEA Timing 

of the toolbox's default output includes CPU and wall-clock execution time. Figure 7.11 

reports mean CPU timing results (fi) for each MOP tested with error bars as above. 

It is seen that the MOGA's mean values are generally less than those of the NSGA, 

although MOP3 is an exception. A straightforward reason exists for this. All MOEAs 

employed a secondary population. Whereas the MOMGA and NPGA append Pc%rrent to 

a file containing Pknown each generation, the MOGA and NSGA update Pknown as part 

of their generational loop. As determination of Pareto optimality is ö(n2), and as the 

MOGA always returns more nondominated vectors than the NSGA (see Figure 7.8), its 

actual execution times are most likely actually much lower (as are the NSGA's). Coello 

Coello also notes the NSGA's large execution time [67:pp. 187-189]. However, even if the 

MOGA's and NSGA's logic is changed to reflect that of the MOMGA and NPGA (or vice 

versa), we believe the MOMGA and NPGA are still the faster running MOEAs because 

they are machine executables. 
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Table 7.2.     Current Experimental Code Status 

Characteristic MOGA MOMGA NPGA NSGA 

Encoding Real values or 
Binary 

Binary Binary Real    Values 
or Binary 

Execution Speed 
(Empirical) 

Slower Faster Fastest Slowest 

# Functions Arbitrary 2 or 3 2 Arbitrary 
Language (Plat- 
form) 

GEATbx 
(MATLAB) 

"C" "C" GEATbx 
(MATLAB) 

Sharing Dynamic Dynamic Fixed Dynamic 

7.3.3 Experimental MOE A Implementations. Although each is instantiated in 

the same manner for experimental purposes, each of the current MOEA codes has different 

capabilities, summarized in Table 7.2. We note the following about its entries. 

MATLAB offers a compiler option allowing "m-files" to be directly compiled into 

"C" source code. Thus, the MOGA and NSGA could theoretically be translated into a "C" 

version. This was not attempted. Extensive modification is necessary to extend either the 

MOMGA or NPGA to employ real-valued genetic representations. Minor modifications 

would allow the MOMGA and NPGA to also handle an arbitrary number of functions 

composing an MOP. The execution speed ratings are empirical and based upon the existing 

implementations. Finally, the NPGA requires key sharing parameters (e.g., askare) to be 

entered at the beginning of each run; extensive modification is required to allow dynamic 

NPGA (Jskare determination. Although the other experimental MOEAs use the NPGA's 

values for consistency, their current formulations allow for dynamic determination of these 

values each generation. 

7.3.4 Additional Experimental Metrics. As discussed in Section 6.3.4, some ex- 

perimental metrics may also be used to track MOEA generational performance. We provide 

examples here for further insight. All results are from an arbitrary MOP7 experimental 

run; we again note that the NPGA is not used in solving MOP7. 

Figure 7.12 presents GNVG results (see Section 6.3.4.8). As the MOMGA records 

Pcurrent each juxtapositional generation, we see values for 13 generations each in eras 1 
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Figure 7.12.     GNVG 

and 2, and 14 in era 3. Note that the number of nondominated vectors is higher near 

the algorithm's end and that it may produce two to three times the number of vectors as 

the MOGA and NSGA. This is most likely due to the MOMGA's larger juxtapositional 

population size (100 individuals vs. 50). The latter MOEAs record results every generation. 

Their results are plotted using identical scales; only three NSGA generations reported a 

GNVG above 8 (two of 9 and 1 of 11). 

Only one citation in the literature [329] reports any quantitative results concerning 

the number of "waves" or fronts produced (per generation) by implementing Goldberg's 

Pareto ranking scheme (see Section 3.3.2.2). We present a similar graph (Figure 7.13) 

showing the number of waves may vary significantly between generations. As this compu- 

tation may be significant, it is most likely the main reason why the NSGA is the slowest 

MOEA tested (shown in Section 7.3.3). Figure 7.14 shows NVA values during a MOGA 

run. As described in Section 6.3.4.9, we see this metric's value may remain steady for 

several generations and sometimes shows a net loss of solutions from PFknown ■ 
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Figures 7.15 and 7.16 are reproduced from a previous publication [325] investigating 

MOEA convergence. The generational distance metric (G, discussed in Section 6.3.4.2) 

is used there to indicate an MOEA's convergence to PFtrue. One expects G to generally 

decrease during execution if convergence is occurring, although the contextual nature of 

determining Pareto dominance is clearly reflected by the results in Figure 7.15. 

7.4    Summary 

This chapter presents MOEA experimental results and analyses. After describing 

the presentation approach, selected results are presented for five test functions. Detailed 

discussions are teamed with appropriate figures to judge MOEA effectiveness. After sub- 

stantiating the choice of three practical metrics (generational distance, overall nondomi- 

nated vector generation, and spacing), nonparametric statistical analyses then show the 
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NSGA performance to be statistically worse than the other tested MOEAs (over the test 

problems). Concluding the chapter are selected results and observations of related experi- 

ments. 

7-22 



100 • • 5 

99.5 4 . 

E
rr

or
 R

at
io

 (
%

) 
CD

 
to

  
  

  
P

° 
  
  
 C

O 
00

   
   

 O
l  

   
  C

O 

o,   3 

c 
Ü      o 
to    * 
Q. 
w   1 

97.5 

97 

> 0 

-1 
i 

MOGA MOMGA NPGA NSGA MOGA MOMGA NPGA NSGA 
(a) (b) 

400 400 
<D 

at
io

na
l 

D
is

ta
nc

 

-i
   

   
   

N>
   

   
   

CO
 

o
  

  
 o

  
  
 o

 
o

   
   

o
   

   
o

 

2 
LÜ 

E 
E 
's 
5 

300 

200 

100 
CD 

a       0 
CD 

-100 

. i 0 

-100 

•                        « i 

MOGA MOMGA NPGA NSGA MOGA MOMGA NPGA NSGA 
(c) (d) 

20000 

o 15000 
CO 

^ 10000 
CO 

fe   5000 
o. >. 
X         0 *                         • • 

1 

0.8 

§0.6 
> 
O0.4 

0.2 

I 
MOGA MOMGA NPGA   NSGA 

(e) 

200 

150 

CD 
| 100 
O 

MOGA MOMGA NPGA   NSGA 
(f) 

50 

0 
MOGA MOMGA NPGA   NSGA 

(9) 

Figure 7.17.     MOP1 Metrics 

7-23 



100 r 

.2   96 h 

CC 

92 

1.2 r 

1.15 

1.1 

1.05 

1 

0.95 

MOGA MOMGA NPGA   NSGA 
(c) 

MOGA MOMGA NPGA   NSGA 
(e) 

150 

100 
> 

50 

a. 
CO 

0.2 

0.15 

i) 

0.1 

0.05 

0 

0.8 

0.6 

O 
> 0.4 
O 

0.2 

0 

MOGA MOMGA NPGA   NSGA 
(b) 

0.2 

S0.15 
ÜJ ■ 

M
ax

im
um

 
o

 
ö

  
  

  
 P

 

i      •      i 
MOGA MOMGA NPGA   NSGA 

(d) 

MOGA MOMGA NPGA   NSGA 
(f) 

MOGA MOMGA NPGA   NSGA 
(9) 

Figure 7.18.     MOP2 Metrics 

7-24 



105 r 

C?100 

£   95h 

w   90 

85L 

1.025 r 

o   1.02 
ra 
cc 
co 
P 

1.015 

1.01 

1.005 

1 

MOGA MOMGA NPGA   NSGA 
(a) 

CO 

0.08 

c 
CO 
00 

b 
"cö 
c 

0.06 

0.04 | 
0.02 I       I       : 

0) c 
CD 
O 

0 .    !    •    I 
MOGA MOMGA NPGA   NSGA 

(c) 

MOGA MOMGA NPGA   NSGA 
(e) 

350 

300 

250 
O 
§ 200 
O 

150 

100 

50 

0.5 

0.4 

c?0.3 
o 
CO 

&0.2 
! 

0.1 

0 

■ 

MOGA MOMGA NPGA   NSGA 
(b) 

4 
. 

,_   3 
g 

1      1 
CO 

-1 
MOGA MOMGA NPGA   NSGA 

(d) 

0.8 

0.6 
DC 
C3 
>0.4 
O 

0.2 

0 
MOGA MOMGA NPGA   NSGA 

(f) 

MOGA MOMGA NPGA   NSGA 
(9) 

Figure 7.19.     MOP3 Metrics 

7-25 



100 r 

CP   95 

fi   90h 
g 
w   851- 

80L 

0.8 

S   0.6 

0.4 

£   0.2 

o 
-0.2 

2.5 

■S    2 
(0 

DC 
cd 
£1.5 
CO 

0) 

0.5 

MOGA MOMGA NPGA   NSGA 
(a) 

MOGA MOMGA NPGA   NSGA 
(c) 

MOGA MOMGA NPGA   NSGA 
(e) 

150 

> 
z 
O 

100 

50 

MOGA MOMGA NPGA   NSGA 
(d) 

U.Ö 

0.6 
tr i CD 
> 0.4 
O . 

0.2 i 
i 

MOGA MOMGA NPGA   NSGA 
(f) 

MOGA MOMGA NPGA   NSGA 
(9) 

Figure 7.20.     MOP4 Metrics 

7-26 



MOGA MOMGA NPGA   NSGA 
(c) 

1.4 

■2-1.2 
CO 
0C 
CO . 
S  1 
[0 1 1 i 
CD 
a. 
I 0.8 

MOGA MOMGA NPGA   NSGA 
(e) 

0.25 

0.2 • 

c?0.15 
8 
&  0.1 

0.05 
• I 

0 
1 

MOGA MOMGA NPGA NSGA 
(b) 

10 

_   8 
2 

E   6 

•i  4 
S 

0 
, 

MOGA MOMGA NPGA NSGA 
(d) 

0.5 

0.4 

g0.3 
> 
§0.2 

0.1 j 

0 
• i 

MOGA MO* i/IGA NPGA NSGA 
(f) 

500 

400 

o
      o

 
o

      o
 

C
O

         C
M

 

O
A

N
O

 

100 j 
i            1 

MOGA MOMGA NPGA   NSGA 
(g) 

Figure 7.21.     MOP6 Metrics 

7-27 



^ 

^ 

b 

o 
iv 

q 
ss 

to 

IM q 
d 

7—1 

Iv 

7—1 

to 
o 
7-1 

CS 

00 
CO 
to 
7—1 

IV 
lO 
o q 
d 

oo 

CO q 
d 

00 
00 
o q 
d 

o 
00 
CO q 
d 

Iv 
Ol 
CO 
CO 
7-5 

M 
IO 
Ol 
CO 
7-5 

cs 
00 
to 
IO 
7-5 

»O 

co 

7-5 

to 
00 
Ol q 
d 

IO 
7-H 

IO 
IV 
d 

oo 

7-H 

d 

IV 
to 
Ol 
cs 
iM 

to 
to 
7-H 

q 
d 

7-H 

00 
o q 
d 

CO 
Ol 
IV 
oq 
es 

oo 
ss 
ss 

ss 

3. 

CO 
iv 
7—1 

7-3 

7—1 

Ol 
7-1 

q 
d 

1—1 

7-1 

Ol q 
7-5 

to 
7—1 

co 

ss 
7—1 

IV 
co 
(M 
O 
o 

IV 

IV 
o 
O 

CO 
to 
cs 
o 
o 

Ol 
ss 
o 
7-H 

o 

co 
7-1 

to 
M 

7-H 

7-H 

oo 
o 
es 

IO 
7-H 

cs 
co 
7-H 

o 
7-H 

TP 
CO 

es 

cs 

T-l 

IV 
T—1 

Ol 
to 
oo 
io 
o 

IV 
co 

o 

iO 
Ol 
7-H 

ss 
co 

to 
to 
cs 
o 
o 

to 
i- 
o 
o 
o 

IV 
iO 
Ol 
00 
to 

to 
IV 

to 
M 

b 
00 
00 

7-5 

o 
lO 

d 

co 
t~ 
to 
es 
IV 
o 
IM 
to 

IO 
IV q 
d 
TH 
7-1 

o 
M o q 
d 

00 
CO 
ss 
q 
d 

C0 o q 
d 

es 

co q 
d 

7-H 

o 
o 
q 
d 

IO 
o 
o 
q 
d 

o 
o 
o 
q 
d 

7-H 

o o q 
d 

CS 
M 
7-H 

q 
d 

to 
o 
o 
T-l 

d 

oo 
CO 
M q 
d 

oo 
7-H 

cs 
co 
d 

tv 
tv 
7—1 

q 
d 

o 
o 
q 
d 

o 
Ol 

7-H 

d 

co 
oo 

q 
d 

7—1 

U 
+^ 
Kl 

a. 
00 
to 
Iv 

7-H 

to 
es 
o q 
d 

CO 
to 
01 
7—1 

d 
CO 
00 
M 

00 
7—1 

7—1 

q 
7-5 
IV 

CO 
7-1 
7-< 

o 
7-1 

oo 
IV 
C0 o 
7-H 

to 
CO 
7-1 

o 
7-H 

CO 
Ol 
CO 
o 
7-H 

M 
o 
o 
o 
7-H 

7-H 

CO 
o o 
7-H 

M 
o 
o 
o 
7-H 

IV 
o 
o 
o 
7-H 

00 
7-H 

to 
M 
7-H 

00 
to 

o 
7—1 

CO 
M 
7-H 

o 
7-H 

Ol 
Ol 

7-H 

IV 
Iv 
Iv 
Ol 
O 

o 
cs 
Ol 
Ol 
o 

oo 
o 
o 
7-H 

CO 
IO 
to 
Ol 
o 

13 -^ 
d 

a 
SH 
0) 
ft 

W 

co 

C5 

b 

7-1 

o 
M 
CO 
o 

o 
CO 
CS q 
d 

O 
o 

o 
7—1 

IV 
00 
CO n. d 
7—1 

co 
o 
o 
o 
o 

7-H 

M 
O 
O 
o 

o 
o 
o 
o 

M 
to 
O 
o 
o 

7-H 

o 
7-H 

o 
o 

CO 
00 
o 
o 
o 

00 
o 
o 
o 

00 
7-H 

CS 
o 
o 

M 
to 
O 
O 
o 

to 
Iv 
o 
o 

CO 

o 
o 
o 

IO 

ss 
7-H 

o 

T-l 

O 
O 
o 
o 

7-H 

o 
o 
o 
o 

Ol 
IV 
iO 
7-H 

o 

oo 
7-H 

00 
o 
o 

a. 
OS 
to 
7—1 

o 

CO 

7-1 

q 
d 

lv 
to 
00 q 
tö 
to 

7—1 

IO 
7—1 

7-H 

7—1 

o 
7-H 

o q 
d 

IV 
M 
o 
q 
d 

es 
7-H 

o q 
d 

7-H 

■<* 

7-H 

q 
d 

7-1 

q 
d 

IO 
es q 
d 
o q 
d 

7-H 

Ol 
es 
q 
d 

o 
Ol q 
d 

co 
iO 

q 
d 

7—1 

iO 
cs 
q 
d 

7-H 

o 
CO 
co 
d 

o 
o q 
d 

7-H 

o 
o q 
d 

co 
CO 
IO 
CO 
d 

cs 
o 
Ol q 
d 

IV 

&q 

b 

o o 
o q 
d 

CO 
Ol q 
d 

o 
o 
o q 
d 

o o 
o 
q 
d 

o o 
o q 
d 

o o 
o 
q 
d 

es 
o 
to 
■<* 

es 

o o 
o 
q 
d 

o 
co 
Ol q 
d 

o 
o o 
q 
d 

IV 
CO 

q 
es 

o 
o 
o q 
d 

o 
o o q 
d 

o 
o 
o q 
d 

M 
O 
Ol 

o 
o 
o q 
d 

M 
O 

d 

cs 
7-H 

cs 
cs 
co 
rH 

7-H 

q 
d 

o o 
o q 
d 

a. 
o 
o 
o 
o 
7—1 

o 
o 
Ol 
Ol 
o 

o 
o 
o 
o 
7—1 

o 
o 
o 
o 
7—1 

o 
o 
o 
o 
7-H 

o 
o 
o 
o 
7-1 

tv 
00 
CO 
Ol 
o 

o 
o 
o 
o 
7-H 

IV 
Ol 
Ol 
Ol 
o 

o 
o 
o 
o 
7-H 

IO 
IO 
7-H 

Ol 
o 

o 
o 
o 
o 
7-H 

o 
o 
o 
o 
7-H 

o 
o 
o 
o 
7-H 

to 
kO 
o 
Ol 
o 

o 
o 
o 
o 
7—1 

7-H 

00 
Ol 
Ol 
o 

es 
7-H 

to 
7-H 

CO 

o 
o 
lv 
Ol 
o 

o 
o 
o 
o 
7-H 

O 
^ O ^ <^ O S ü o 
O S PH CZI 

§ | Ä Ä 

o a ü o 
O S PL, 1X1 
§ § ^ fc 

O  « O o 
O S PH en 
^H S^ H^1 Jj^ 
^5 ^H ^^ ^^ 

^ O <! <! O S o o 

S § * * 
o s o o 
O g PH en 
g w 25 (2-i 

PH 
o dl 

o 
PH 
0 

eo 
OH 

O 
S 

PH 
O 

PH 

O 
2 

7-28 



CO 

b 
00 
os 

i—i 

CM 
O 
to 
m 
o 

o 
o 
o 
o 
o 

o 
o 
o 
o 
o 

CO 
CM 
o 
o 
o 

LO 
LO 
0 
0 

0 

LO 

0 
0 

0 

00 
IV 
1—1 
0 

0 

to 
0 
LO 
0 

0 

to 
to 
0 
0 

OS 

O 

O 

CO 
CM 
OS 
0 

0 

IV 
i-H 
CN 
O 

O 

LO 
i-H 
IV 
O 

O 

0 
00 
CO 
0 

0 

O 
IN 
i-H 

O 

00 
CM 
O 
O 

O 

1>- 
00 
0 
0 

0 

CO 

co 
0 

0 

IN 
co 
i-H 
O 

O 

=4 

co 
CO 

oq 
T-3 

OS 
IV 
1—1 
IN 

d 
i 

o 
o 
o 
o 
1—1 

o 
o 
o 
o 
i-H 

1 

LO 
co 
1—1 
o 
d 

CM 
LO 
i-H 
0 

d 

0 
LO 
i-H q 
d 

LO 
os q 
d 

LO 
IV 
LO 
i-H 

d 

OS 
00 
0 
IN 

d 

co 
LO 
co 
i-H 

d 

(N 
OS 
IN 

d 

O 
LO 
CM 
1—1 

d 

00 

O 
CN 

d 

to 
co 
CM 
CN 

d 

i-H 
00 

d 

CO 
CO 
i-H q 
d 

os 
os 
0 q 
d 

OS 
CO 
1—1 
i-H 

d 

os 
IN 
CO q 
d 

CO 
CJ 

• I-H 

ft? 

o 

b 

CO 
■># 
CM 
o 
o 

«3 
00 
oo 
CO 

o 

CN 
o 
o 
o 

i-H 
co 
o 
o 
o 

CO 
OS 

o 
o 

00 
0 
i-H 
i-H 

0 

OS 
00 

0 

0 

OS 
CO 
i-H 
0 

0 

1—1 
iv 
0 
0 

0 

i-H 
IV 
O 
O 

O 

CO 
to 
0 
0 

0 

iv 
IN 
0 
0 

0 

00 

LO 
O 

O 

CM 

OS 
i-H 

O 

OS 
CM 

O 

O 

LO 
0 
IN 
O 

O 

0 
LO 
i-H 
O 

O 

0 
co 
0 
i-H 

O 

00 
IN 
O 
O 

O 

to 

0 
0 

0 

CO 
"■+^ 

CO 

co 

13 -^ 
Ö 
o> 
a 
tu 
ft 

=3. 

LO 
IV 
co 
o 
o 

Iv 
tv 
o 
■<* 

o 

i-H 
tv 
o 
o 
o 

co 
oo 
o 
o 
o 

o 
OS 
co 
co 
o 

IN 
es 
co 
0 

LO 
IV 
1—1 
co 
0 

to 
to 
LO 
0 

0 

CO 
OS 
CO 
0 

0 

OS 

CM 
O 

O 

CO 
LO 
CO 
0 

0 

LO 

O 

O 

CO 
00 
Iv 

0 

00 
to 
to 
CO 

0 

CO 
OS 
(N 
<N 

O 

«O 
OS 
O 

O 

to 
r-i 
O 
i-H 

O 

O 
LO 
LO 
IM 

O 

T-H 
IN 
IN 
O 

O 

i-H 
i—l 
co 
0 
0 

fe; 

b 

oo 
CO 
oo q 

co 
Iv 
IV 
CN 

id 
CO 

to 
i-H 
CM 

d 

to 
i-H 
LO 

d 

00 
to 
oo 
CO 

CM 
i-H 

OS 
i-H 
CN 
00 

tv 
CN 

i-H 
LO 
l- 
<N 
IN 
i-H 

IV 
os 
00 

CO 

q 
CN 
LO 

00 
iv 
co 
LO 

CN 
LO 

00 
to 
to 
i-H 

IV 

00 
OS 
■<* 

CM 

d 
CN 

LO 
tv 
Iv q 
d 
r-H 

co 
i-H 
CO 
IV 

LO 
co 

co 
LO 
00 
00 

co 
LO 
CO 

cd 

iH 
to q 
LO 
i-H 

co 
lv 
os 
LO 

d 
0 
i-H 

b- 
O 
OS q 
CM 

IV 
co 
CO 
00 

iv 

1 
a. 

o 
o 
o 
CO 

CO 

O 
o 
o 
LO 

00 
to 

o 
o 
o 
CM 

i-H 

o 
o 
o 

i-H 

o 
o 
o 
i-H 

LO 
oo 

0 
0 
0 
LO 

00 
OS 

0 
0 
0 
tv 

d 
Iv 

0 
0 
0 
CN 

i-H 

O 
O 
O 
i—H 

<N 
OS 
<N 

O 
O 
O q 
LÖ 
00 
i-H 

O 
O 
O q 
CN 
to 
CN 

O 
O 
O 
LO 

i-H 

0 
0 
0 q 
06 
00 

0 
0 
0 
LO 

tV 
to 

0 
0 
0 
CN 

CN 

0 
0 
0 
00 

iv 
i-H 

O 
O 
O 
i—l 

00 
O 
i—l 

0 
0 
0 
CO 

i-H 
tv 
(M 

O 
O 
O 
LO 

cd 
CN 

0 
0 
0 
1—1 

CO 
CO 

< 

O 
3 o < < 
O 5 O O 

S 5 ' ^ 

$ o < < 
O   ^   PH   CO 

0 S 0 0 ri   O   <   < 0 a 0 0 
OSMfi O  'S.   PH   CO 

PH 

o 
i-H 

PH 

o 
S 

PH 

0 
PH 

0 
PH 

0 
S 

Hi 
PH 

O 

7-29 



Table 7.5. MOEA Overall Results 
MOP Pareto Front ONVG Spacing Generational 

Distance 

M0P1 "£ true 168 (0.0010%) 5.93e-15 0 

PFknown (MOGA) 49 0.1188 3.4132e-12 

PFknown (MOMGA) 168 2.1745e-ll 1.8349e-12 

PFknown (NPGA) 2 -1 0.2956 

PFknown (NSGA) 6 3.7569 0.6688 

MOP2 *  * true 251 (0.0015%) 0.0102 0 

PFknown (MOGA) 145 0.0103 1.7928e-04 

PFknown (MOMGA) 144 0.0101 8.9255e-05 

PFknown (NPGA) 133 0.0099 2.0287e-04 

PFknown (NSGA) 45 0.0254 0.0030 

MOP3 -T-ftrue 7,439 (0.0443%) 0.0039 0 

PFknown (MOGA) 970 0.0211 1.4611e-04 

PFknown (MOMGA) 629 0.1289 0.0011 

PFknown (NPGA) 919 0.0262 1.8701e-04 

PFknown (NSGA) 453 0.0495 6.5920e-04 

MOP4 •*   "true 184 (0.0011%) 0.0912 0 

PFknown (MOGA) 212 0.0635 0.0604 

Pi^™» (MOMGA) 122 0.0910 6.0801e-04 

P*t»0«,» (NPGA) 96 0.1243 0.0043 

ffh.«. (NSGA) 36 0.2929 0.1523 

MOP6 -t £ true 1,064 (0.0063%) 0.0013 0 

PFknown (MOGA) 385 0.0054 3.7862e-05 

P^»0„n (MOMGA) 884 0.0017 3.4246e-06 

PFknown (NPGA) 57 0.0323 0.0074 

P*t»0«™ (NSGA) 83 0.0222 0.0029 

MOP7 ■*   "true 40 (0.0002%) 0.1151 0 

PFknown (MOGA) 12 1.5786e04 2.2217e04 

P^tnown (MOMGA) 40 0.1151 8.7334e-16 

PFknown (NSGA) 3 2.1961 1.0079 
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Tal ale 7.6.      Nonparamet ric Statistical Test Results 
MOP MOEA Generational ONVG Spacing 

MOPl 
a = 0.1 

Kruskal-Wallis 0.0007 0.0001 
MOGA - MOMGA 0.0390 0.1284 

a* = 0.03333 MOGA - NPGA 0.0027 0.0001 
MOGA- NSGA 0.0848 0.0002 

MOMGA - NPGA 0.0009 0.0081 
MOMGA - NSGA 0.0213 0.0210 

NPGA - NSGA 0.1390 0.3415 

MOP2 
a = 0.1 

Kruskal-Wallis < .0001 < .0001 < .0001 
MOGA - MOMGA 0.1287 0.1733 0.8797 

a* = 0.03333 MOGA - NPGA 0.5379 0.4055 0.6769 
MOGA- NSGA 0.0002 0.0002 0.0002 

MOMGA - NPGA 0.1291 0.0537 0.5452 
MOMGA - NSGA 0.0002 0.0002 0.0002 

NPGA - NSGA 0.0002 0.0002 0.0002 

MOP3 
a = 0.1 

Kruskal-Wallis 0.0023 < .0001 0.0026 
MOGA - MOMGA 0.0233 0.0019 0.0284 

a* = 0.03333 MOGA - NPGA 0.1204 0.1035 0.8798 
MOGA- NSGA 0.0962 0.0002 0.0065 

MOMGA - NPGA 0.0015 0.0045 0.0342 
MOMGA - NSGA 0.7624 0.0101 0.0588 

NPGA - NSGA 0.0041 0.0002 0.0041 

MOP4 
a = 0.1 

Kruskal-Wallis < .0001 < .0001 < .0001 
MOGA - MOMGA 0.0025 0.1509 0.0082 

a* = 0.03333 MOGA - NPGA < .0001 0.0002 0.0002 
MOGA- NSGA 0.0002 0.0002 0.0002 

MOMGA - NPGA 0.4963 0.1304 0.3258 
MOMGA - NSGA 0.0004 0.0002 0.0003 

NPGA - NSGA 0.0002 0.0002 0.0002 

MOP6 
a = 0.1 

Kruskal-Wallis < .0001 < .0001 < .0001 
MOGA - MOMGA 0.0008 0.0019 0.0082 

a* = 0.03333 MOGA - NPGA 0.0001 0.0002 0.0002 
MOGA- NSGA 0.0001 0.0002 0.0002 

MOMGA - NPGA 0.0001 0.0002 0.0002 
MOMGA - NSGA 0.0001 0.0002 0.0002 

NPGA - NSGA 0.0025 0.0011 0.0004 
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VIII.   Conclusion 

I can remember Bertrand Russell telling me of a horrible dream. He was in the top floor 
of the University Library, about A.D. 2100. A library assistant was going round the shelves 
carrying an enormous bucket, taking down book after book, glancing at them, restoring 
them to the shelves, or dumping them into the bucket. At last he came to three large 
volumes which Russell could recognize as the last surviving copy of Principia Mathematics. 
He took down one of the volumes, turned over a few pages, seemed puzzled for a moment 
by the curious symbolism, closed the volume, balanced it in his hand and hesitated.... 

G. H. Hardy, A Mathematician's Apology 

8.1 Introduction 

Of all research conducted supporting this effort this document presents the most 

important results. Taken as a whole, this research is largely original and should be of great 

interest to the MOEA research community. Portions are "state of the art" and expand 

MOEA knowledge frontiers. Section 8.2 highlights this research's major contributions, 

substantiating their originality and relating them to the overall research goals. Based on 

this research, Section 8.3 then identifies promising research areas within which further 

work may be beneficial. 

8.2 Dissertation Contributions 

Did this research meet its goals? This section presents evidence backing our claim 

it did. This research produced several original contributions satisfying research goals, 

including an MOEA classification, additional Pareto-based MOEA theory and terminology, 

an innovative MOEA, a proposed MOEA test function suite (with guidelines for adding 

further functions), and an experimental methodology allowing for quantitative comparisons 

based on the developed metrics. These contributions are now summarized (not necessarily 

in order of importance), their originality substantiated, and their specific relationship to 

the research goals and supporting objectives (as shown in Table 8.1) identified. 

8.2.1 MOEA Technique Classification, Catalogue, and Analysis. A framework 

with which to classify MOEA implementations and applications was defined and used in 



Table 8.1.     Research Goals and Objectives 
Goal: MOEA Classifications 
Objectives: 
Develop/refine a sound, extensible basis for MOEA classification 
Classify known implementations 
Organize key problem/algorithm domain components of classified MOEAs 
Organize MOEA test functions used in the literature 

Goal: MOEA Analyses 
Objectives: 
Critically consider current MOEA literature based upon classification effort 
Analyze the MOP/MOEA domain integration process 
- Identify and analyze major MOP domain characteristics 
- Identify and analyze key MOEA components used in solving MOPs 
Identify existing "well-engineered" MOEAs 
Identify/analyze metrics for use in comparing MOP solutions 

Goal: MOEA Innovations 
Objectives: 
Define the presence and role of BBs in MOP solutions 
Engineer an MOEA to explicitly manipulate building blocks in solving MOPs 
- Incorporate relevant analytical results in designing a BB-based MOEA 
- Determine performance of the new MOEA 
- Determine benefits of a parallel implementation 
Substantiate and propose an MOEA test function suite 
Substantiate and execute MOEA experiments 
- Use developed metrics, test functions, and suitable MOEAs 
Relate experimental results to MOEA application in real-world MOPs 

cataloging key facts of known MOEA-based research efforts. New citations are easily placed 

in this framework; new techniques are easily accommodated by extending it. The catalogue 

is a "one-stop shopping" resource for the interested practitioner and allows several ways 

to cross-reference information of interest. Its structure and accompanying analysis allows 

EA practitioners to quickly become familiar with key MOEA issues and easily implement 

theoretically sound algorithms. As part of the cataloging effort this research attempted 

to capture all currently known MOEA citations in its database. Recently, a related effort 

was identified that is constructing an on-line MOEA bibliography and repository [68]. We 

contributed a large number of citations to this list helping bring the current total to over 

300 separate references. 

8-2 



Based on our review an extensive and detailed analysis discussed several key MOEA 

topics, offering many original observations such as general MOEA complexity and design 

recommendations. This analysis substantiated and profiled heretofore unseen research 

trends and "disconnects" in the literature, rebutting some assertions and validating others. 

Finally, we collected, classified, and analyzed all known MOEA test functions found in the 

literature. 

The MOEA classification framework is an extension of one previously appearing in 

the literature [152]. We independently justified its structure in light of past MOEA research 

and indicated several other multiobjective solution techniques may yet be implemented 

within an MOEA. Our tabular presentation is also unique. Although other (complemen- 

tary) MOEA reviews exist, as do similar cataloging efforts focusing on single-objective EAs 

(e.g., EAs in management applications [236]), this is the only MOEA resource with this 

extensive detail. Other MOEA researchers recognize its value as they cite it in their own 

work [61, 83]. 

Although "bits and pieces" of this analysis are addressed elsewhere this is the only 

collocated, and most comprehensive, discussion currently available. These contributions 

satisfy all objectives supporting the MOEA classifications goal (see Table 8.1). Except for 

metric identification, they also fulfill all objectives supporting the MOEA analyses goal. 

8.2.2 Pareto Theory, Terminology, and Notation. The literature review support- 

ing this research indicates many MOEA researchers do not clearly understand the MOP 

domain, and highlights the fact that many use Pareto terminology inconsistently. Thus, 

we have developed several Pareto definitions, theorems, and a corollary specifically relating 

to MOEA implementation and use. These definitions and theorems are either not found 

in the MOEA literature (or citations within it) or were developed independently; together 

they more clearly define the MOP and MOEA domains. We also developed a consistent 

terminology and associated notation differentiating between Pareto instantiations within 

MOEAs. Although it had its genesis elsewhere [152] we have refined, specified, and im- 

plemented the notation for general MOEA use. This easily extendable notation is a tool 

with which researchers can consistently and unambiguously explain and refer to Pareto 
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concepts instantiated in their algorithms. Taken collectively these results further define 

and refine the domain within which MOEAs operate. 

8.2.3 MOMGA Implementation. The MOMGA, a new and innovative MOEA, 

was justified and implemented. This algorithm extends a previously proposed single- 

objective EA (the mGA) to the MOP domain, incorporating known MOEA theory and 

further insights gained through this research in an attempt to construct a more efficient 

and effective MOEA. 

The MOMGA exemplifies a new paradigm, as it is the only known MOEA explic- 

itly manipulating BBs in the search for MOP solutions. In fact, of all known MOEA 

implementations, only one makes any mention of even considering mGA concepts within 

MOEAs [142]. Because of its unique algorithmic structure and operators the MOMGA pro- 

vides the means with which to identify and "follow" BBs as they are used in constructing 

MOP solutions. This new MOEA may be parallelized which should result in performance 

gains. 

The MOMGA's successful operation and performance over this problem class implies 

other BB-based EAs may also be extended to the MOP domain. These alternative BB- 

based implementations may then offer further insight. The MOMGA, and its supporting 

analysis and justification, satisfy the first two objectives supporting the MOEA innovations 

goal (see Table 8.1). 

8.2.4 MOEA Test Function Suite. An MOEA benchmark test function suite was 

substantiated and proposed. Although de facto MOEA benchmark test functions exist, no 

standardized and/or truly justified test functions were available; the lack of an MOEA test 

suite was a glaring omission. Thus, a range of MOP genotypical and phenotypical charac- 

teristics were identified and related to the MOEA domain. Consideration of appropriate 

issues then led to suitable test functions (with and without side-constraints, and drawn 

from the literature) suggested for use. We also addressed recent related work proposing 

an MOEA test suite construction methodology [83], indicating some possible shortfalls. 
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This document reflects one of only two collocated discussions of and proposals for 

an MOEA benchmark test function suite [326, 83]. Unlike some test functions used in 

the MOEA literature the proposed MOPs do test relevant MOEA domain characteristics. 

This now serves as a foundation for further definition of problem domain characteristics, 

and for constructing functions of desired complexity/characteristics. The test function 

suite lays the groundwork for "meaningful" MOEA comparisons, and satisfies an objective 

supporting the MOEA innovations goal (see Table 8.1). 

8.2.5 MOEA Experimental Methodology and Metrics. A quantitative MOEA 

experimental methodology was substantiated and implemented. Several new metrics were 

also defined, which when used with other metrics drawn from the literature, allow for 

absolute and/or relative quantitative MOEA comparisons. A parallelized program allowing 

for deterministic enumeration of arbitrarily large numeric solution spaces was developed 

supporting this methodology, and may also be used to "solve" combinatorial optimization 

problems. Experimental results highlighted the strengths/weakness of selected MOEA 

implementations and identified issues for further study. 

This quantitative MOEA experimental methodology stands as a new foundation for 

future MOEA comparisons. The overwhelming majority of cited MOEA "experiments" 

consists of testing MOEAs on unjustified numeric MOPs and/or specific applications, often 

visually comparing each MOEA's PFknown . Very few efforts report quantitative metrics 

for judging MOEA performance [292, 359, 358]. This methodology with its associated 

quantitative metrics allows for statistical and quantitative conclusions concerning tested 

MOEAs' efficiency and or effectiveness. We can now make absolute versus relative per- 

formance statements. Even if PiT%e or PFtrue is unknown, some metrics can still indicate 

(lack of) desired performance; they may also be used in determining algorithmic conver- 

gence to PFirue. As a whole, this contribution satisfies the last objective supporting the 

MOEA analyses goal (see Table 8.1), and the remaining objectives supporting the MOEA 

innovations goal. 
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8.3   Future MOE A/MOP Research 

This research accomplished its major goals. In addition to producing several original 

contributions, the MOMGA, MOEA test function suite, and experimental metrics are 

"state of the art." The contributions we have noted substantiate further exploration into 

selected topics. 

A primary interest is the role of BBs in determining a set of solutions. Extending 

another appropriate BB-based single-objective EA into the MOP domain produces another 

tool with which to study their role and address the relationship between BBs and P<roe, 

and allows more complex MOPs to be solved with these BB-based MOEAs. 

The experimental methodology is an excellent framework within which to compare 

MOEA implementations and their performance. Further appropriate additions to the 

MOEA test function suite (e.g., MOPs with real-world-sized search spaces and analytical 

Ptr%e solutions, side-constrained and iVP-Complete MOPs) increase the suite's benefits 

to the MOEA community. Further experimentation using the test functions also allows 

for MOEA parameter sensitivity analysis. Additionally, some of the proposed metrics 

may be used to explore inter-generational behavior, i.e., they can be used to measure the 

convergence characteristics of various MOEAs. 

The MOEA software used in this research is largely developmental. We used MAT- 

LAB to our advantage in the rapid prototyping and execution of experimental software 

and supporting research. Although reengineering all experimental MOEAs may increase 

execution time, translating the MATXylß-implemented MOEAs to C++ has in at least 

one case shown a minimum one order of magnitude improvement; parallelizing the C++ 

code provides even greater performance gains [143:p. 95]. 

Finally, other algorithmic approaches may be suitable for implementation within the 

MOP domain. For example, single-objective, Immune EAs may be implemented within 

Computer Virus Immune Systems [212]. An Immune EA's objective function is used 

to condition the EA's population (antibodies) to recognize a broad range of solutions 

(antigens), which may have widely differing characteristics. For example, Immune EAs 

are candidates for solving constrained single-objective optimization problems [139, 141]. 
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As Pareto optimal solutions have been shown to (possibly) have differing characteristics, a 

multiobjective Immune EA approach may be viable and result in an alternative algorithmic 

solution technique for MOPs. 
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Appendix A.   MOE A Classification and Technique Analysis 

A. I    Introduction 

This chapter contains the tables classifying and cataloging all known (to date) MOEA 

implementations. Relevant background information is first presented, followed by tables 

for each of the three major techniques, and finally the tables cataloging related MOEA 

publications. 

These tables, background information, and associated discussion are originally pub- 

lished in a technical report [326]. Because the volume of information is so large, the 

background information and tables are placed in this appendix with the analysis in the 

body. 

A.1.1 Mathematical Notation. Definition 2 (Section 2.2) defines a formal MOP 

model; we also employ the following associated notation to mathematically represent var- 

ious MOEA techniques. 

$ : Ü—>A (A.l) 

/(a,-) ä f(/i(a,-),...,A(a.-)) (A.2) 

9 : P —* P' (A.3) 

P = {ai\Vai,aiE Pknown} (A.4) 

Equation A.l describes a particular technique's domain (ft) and range (A). Equa- 

tion A.2 is a solution's scalar fitness value derived via some defined equation. Equation A.3 

is a generation transition function indicating that the particular technique incorporates 

specialized selection EVOPs, perhaps not relying on a directly computed overall solution 

fitness. Finally, Equation A.4 describes the set of solutions returned to a DM such that 

every solution in the set is a member of Pknown • 

A. 1.2   Presentation Layout. A brief explanation of each major technique in 

Figure 2.13 (Section 2.6.1) is presented, and includes a mathematical description such 
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as Fonseca and Fleming present [107]. Also, a table cataloging relevant MOEA research 

efforts incorporating that technique is shown. Each table, for each effort, lists five key 

algorithm and problem domain components which are: 

Approach. Name or type of MOEA used, citation, and year results published 

Description. Approach specific information of interest, e.g., operators, methodology, etc. 

Application. Problem domain (if any) in which the MOEA is applied 

Objectives. Number of objectives and their description 

Chromosome. Representation used and gene correspondence (if noteworthy) 

These components capture essential information about each approach and are not 

meant as a complete description. Because of the manner in which the research efforts were 

classified (according to MOEA fitness assignment and/or selection), the "Approach" and 

"Description" categories contain information such as the specific MOEA type, parallelized 

implementation, specialized EVOPs, etc. Finally, each table's entries are chronologically 

ordered by year published. 

The next few sections present key points of known MOEA approaches. Some as- 

signments of an approach to a particular category are necessarily subjective, as several 

approaches incorporate or report results from several MODM techniques. Thus, some ap- 

proaches are classified more than once; their classifications correspond to the categories 

identified in Figure 2.13. 

A. 2   A Priori MOEA Techniques 

A priori MOEA techniques expect DM input before the EA search process begins, 

and result in an optimal solution presented to the DM. Ordering, linear, and nonlinear 

combination techniques are discussed in this section. 

A.2.1 Lexicographic Techniques. Lexicographic selection (ordering) is based on 

each objective's DM-assigned priority prior to optimization. The highest priority objective 

is used first when comparing solutions; if a tie results the next highest-priority objective is 
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compared, etc. All objectives /i,... , fk are assumed sorted in order of increasing priority. 

This is termed lexicographic ordering [27] and is mathematically represented by: 

$     :     Rn —{0,l,...,/*-l} 

i=i 
(A.5) 

where /(a?) /< /(a2) if and only if 

3j> G {1,... , fc} : Vg e {p,... , *} , /,(OJ) < /,(a,-) A /p(a,) < /p(o,-) , 

and where 

X= < 
1   if(/(aj)/< /(a,-)) 

0   otherwise 

This technique is best used with rank-based selection. Table A.l lists the known lexico- 

graphic MOEA approaches. 

Table A.l   Lexicographic Techniques 

Approach Description Application Objectives (#) Chromosome 

GA [117] (1985) Heuristically prioritizes 
objectives 

Silicon layout com- 
paction 

(3)   Bounding box 
size; Design rule vi- 
olations; Rectangle 
placement 

Variable 
length;    Genes 
are lists of lay- 
out constraints 

Global           Evolu- 
tionary     Planning 
and            Obstacle 
Avoidance   system 
(GEPOA)          [92] 
(1998) 

Fuzzy  tournament  se- 
lection   algorithm  im- 
plements fuzzy lexico- 
graphic preferences 

Motion      planning 
and obstacle avoid- 
ance 

(3)   Euclidean dis- 
tance; Sum of path 
slope changes; Av- 
erage slope change 

Real       Values; 
Genes          rep- 
resent            x-y 
coordinates 

A.2.2 Linear Fitness Combination Techniques. Linear fitness combination is a 

scalar aggregation of several distinct fitnesses; a DM assigns a strictly positive scalar weight 

to each objective reflecting its relative importance to the final solution. The weighting 

vector, A = (w\,... , Wk) G Rk, is often normalized so that its elements sum to unity [308]. 
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This technique is mathematically represented by: 

$ 

3=1 

(A.6) 

where Wj is the weight assigned to objective fj. This technique can be used in fitness 

proportional, tournament, or rank-based selection. Table A.2 lists the known linear fitness 

combination MOEA approaches. 

Table A.2  Linear Fitness Combination 

Approach Description Application Objectives (#) Chromosome 

GA [310] (1991) Hybrid GA implemen- 
tation;   Incorporates a 
schedule   builder    and 
evaluator 

Laboratory         re- 
source scheduling 

Not stated Permutation 
task ordering 

GA-based learning 
system [167] (1992) 

Structured        popula- 
tions;      Parameterized 
mating    only     within 
overlapping        demes; 
Parallelized 

Machine         learn- 
ing (route planning 
and vehicle control) 

(5)   Distance;   Re- 
quired time;   Path 
deviation; Collision 
monitor        activa- 
tions;     Emergency 
monitor activations 

"Action 
Chain;"    Genes 
are     lists      of 
actions          for 
robotic task 

GA [171] (1993) Linear          normalized 
fitness    and    weighted 
penalties 

3-D structure con- 
formational search 

(2) Match penalty; 
Energy penalty 

Binary    string; 
Genes           are 
rotation angles 

GP [278] (1994) Pygmies and Civil Ser- 
vants;     "Normal"    fit- 
ness   computation   for 
servants; Pygmy fitness 
based  on  chromosome 
length;  Recombination 
uses   one  parent   from 
each 

Network sorting (2)           Efficiency; 
Length 

Program 

GA [32] (1994) Specialized    crossover; 
GA     population     se- 
lected    from    training 
database;   One,   some, 
or all  GA  population 
members replace least 
fit database members 

Adaptive       image 
segmentation 

(5) Edge-border co- 
incidence,    Bound- 
ary        consistency, 
Pixel classification, 
Object        overlap, 
Object contrast 

Binary    string; 
Genes   are   fit- 
ness,         image 
conditions, and 
parameters; 
EVOPs         op- 
erate    only   on 
parameters 

GA-FTP1          [44] 
(1994) 

Specialized      EVOPS; 
Objectives are fuzzified 

Multiobjective 
solid      transporta- 
tion problem 

(2) 3-D integer ar- 
ray 

GA [199] (1994) Uses              specialized 
EVOPs 

Job  shop  schedul- 
ing 

(2) Mean flow time; 
Mean lateness 

Integer   string; 
Genes   are   se- 
quenced jobs 

GP [159] (1994) Incorporates minimum 
description length prin- 
ciple 

Pattern recognition 
& Time series pre- 
diction 

(2)     Tree     coding 
length;    Exception 
coding length 

Decision tree 
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Table A.2  continued 

Approach Description Application Objectives (#) Chromosome 

Multi-Niche 
Crowding    (MNC) 
GA       [330,       471 
(1995,1997) 

Fitness    obtained    by 
summing       individual 
rank    in    each    objec- 
tive;   Phenotypic-based 
crowding;      Integrated 
with        flow-transport 
simulation code 

Groundwater    pol- 
lution contaminant 
monitoring;      Also 
tested    on    multi- 
modal,        dynamic 
function 

(3)   Cost;   Contan- 
imant         removal; 
Contanimant  leak- 
age 

Variable length 
integer    string; 
Genes are geo- 
graphic nodes 

GA [279] (1995) Each solution's fitness 
based on how "well" it 
fits its race's ideal 

None (2)    Numeric    op- 
timization        (one 
objective is always 
"race" ideal) 

Implies   binary 
string 

GA [16] (1995) Repair           procedure 
encodes valid chromo- 
somes; Presents unique 
bit   string   representa- 
tion    of   flow-network 
paths 

Computer      Aided 
Process Planning 

(2) Cost; Quality Binary    string; 
Chromosome 
is   an   encoded 
flow network 

GA [225] (1995) Standard GA Pot      core     trans- 
former design 

(2)     Device    area; 
Magnetic           flux 
density 

Binary string 

GA [43] (1995) Crowding-based        se- 
lection;   GA  deceptive 
problem 

Food     distribution 
center management 

(2)    Quality    loss; 
Storage utilization 

Binary    string; 
Genes           are 
cluster    capac- 
ity    and    time 
utilized 

GA [122]1 (1995) Unknown Unknown Unknown Unknown 
GA [11] (1995) Weights selected to ex- 

plicitly focus search 
Wing design (4)            Lift/drag; 

Lift/weight;   Area; 
Lift 

Binary string 

Parallel   GA   [196] 
(1996) 

Decomposition     splits 
problem    into     (inde- 
pendent) sub-problems 
which    are    solved   in 
parallel 

Rotor blade design (3) Unknown Binary    string; 
179 bits; 42 de- 
sign variables 

Multiobjective 
Fuzzy    GA     [321] 
(1996) 

Linear weighted sum of 
fuzzified objectives and 
constraints 

Depth control sys- 
tem 

(2)  Original objec- 
tive; Constraints 

Binary    string; 
Gray coded 

GP [355] (1996) Sum of two objective's 
weighted values; Func- 
tion is adaptive 

Water       pollution 
prediction & Laser 
prediction 

(2)    Error;     Com- 
plexity 

Neural trees 

GP [304] (1996) Progressive          fitness 
measure 

Tetris (2)      Computation 
time; Game time 

Terminal set 

Markowitz    Model 
GA [303] (1996) 

Representation guaran- 
tees feasible solutions 

Portfolio selection (2)   Portfolio  vari- 
ance;   Rate   of  re- 
turn 

Binary    string; 
Genes           are 
stocks 

GA [136] (1996) Apparently   sums   two 
objectives;        Incorpo- 
rates penalty function 

Truck packing (2) Volume; Center 
of gravity 

Binary    string; 
Genes  are  box 
spacings 

GA      [197,      198] 
(1996) 

Specialized       EVOPs; 
Directs     search    from 
"negative"     to     "pos- 
itive"      ideal      point; 
Elitist selection; Fuzzy 
numbers and ranking 

Multicriterion solid 
transportation 
problem 

(3) 3-D integer ar- 
ray 

Multiobjective 
GA [30] (1996) 

Steady-state GA; Indi- 
rect representation and 
mapping allows smaller 
chromosomes 

Table     design     & 
Prism design 

(5) Size; Mass; Flat 
surface;    Stability; 
Supportiveness    & 
Unknown 

Unknown 

1Cited by Li [198]; in Japanese. 
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Table A.2  continued 

Approach Description Application Objectives (#) Chromosome 

ES [7] (1996) Hybridized;   Compares 
results    against    other 
stochastic   and   deter- 
ministic    optimization 
algorithms 

Superconducting 
magnetic       energy 
storage system 

(2)   Energy;    Mag- 
netic   flux   density 
RMS error 

Implies real val- 
ues 

GA [168] (1996) Specialized       EVOPs; 
Only feasible individu- 
als created 

Interval         multi- 
objective          solid 
transportation 
problem 

(3) 3-D real-valued 
array 

Multiobjective 
GA [14] (1996) 

Chromosomal represen- 
tation compatible with 
common CAD tools 

Circuit design (3)  Function;   Sig- 
nal  delay;   Circuit 
area 

Unknown; 
Genes    are    li- 
brary cells and 
attributes 

GA [305] (1996) Two      sub-populations 
initialized    via    NEH 
and      RC      heuristics; 
Uses crowding 

Flowshop/Cellular 
manufacturing 
system scheduling 

(3)           Makespan; 
Flowtime; Idletime 

Integer   string; 
Genes   are  job 
sequences 

GA [161] (1997) Steady-state  GA;   Re- 
sults appear to use only 
two criteria 

Selective laser sin- 
tering  build  cylin- 
der packing 

(3)      Part      over- 
lap;               Packing 
"tightness";      Part 
containment         in 
cylinder 

List    of    lists; 
Permutation 
integer          or- 
dering   in   one 
dimension; 
integers          in 
others 

Multi-Sexual 
GA [201] (1997) 

Individuals   are    "sex" 
coded   (one   for   each 
function);   Recombina- 
tion   uses   one   parent 
from each sex; Individ- 
uals evaluated by their 
sex's function 

None (2)   Numeric   opti- 
mization 

Binary    string; 
"Sex"     marker 
at end 

GA      [300,      299] 
(1997) 

Compares    results    of 
various          scheduling 
heuristics 

Production 
scheduling 

(3)   Rejected jobs; 
Order         lateness; 
Run variation 

Integer    string; 
Indirect   repre- 
sentation 

GA [260] (1997) Uses weighted sum of 
goal deviations;   Com- 
pares   results    against 
those derived by goal 
programming 

Upgrading/new 
road link projects 

(17) Unknown Integer   string; 
Permutation 
ordering 

GA [283] (1998) Integrated     with     fi- 
nite    element    method 
approximation code 

Superconducting 
magnetic      energy 
storage 

(2)   Energy;   Mag- 
netic induction 

Real values 

(1  +   1)    ES    [41] 
(1998) 

Incorporates      special- 
ized   problem   domain 
code 

Permanent magnet 
synchronous motor 

(3) Harmonic con- 
tent;   Fundamental 
component;      Cog- 
ging torque 

Real values 

(1 + 1)   ES   [179] 
(1998) 

Uses   "shaking"  to es- 
cape local minima; In- 
corporates FEM code 

Electric vehicle in- 
duction motor 

(2)     Engine     effi- 
ciency; Weight 

Real values 

GA [328] (1998) Integrated    two     GAs 
with      electromagnetic 
evaluation  code;    Fit- 
ness mapping (scaling) 

Wire   antenna   ge- 
ometry design 

(4)   Antenna  gain; 
Radiation   symme- 
try; Resistance; Re- 
actance 

Real       values; 
Gene     triplets 
represent    wire 
endpoints      in 
3-D space 

GA [227] (1998) Weights  are  functions 
of objective functions' 
max and min values yet 
found 

Computer       aided 
process planning 

(2)          Processing 
and transportation 
time;   Workstation 
load variation 

Integer   string; 
Genes are plans 
producing   cer- 
tain parts 
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Table A.2  continued 

Approach Description Application Objectives (#) Chromosome 

GA [352] (1998) Steady-state            GA; 
Specialized        EVOPs 
and     population     re- 
initialization 

Telephone operator 
scheduling 

(2) Operator short- 
age;  Operator sur- 
plus 

Integer string; 
Genes are par- 
tial schedules 
composed of 
shift time, and 
number and 
time of rest 
breaks 

GA [57] (1998) Specialized    crossover; 
|   population:     tour- 
nament    selection,     j 
roulette     wheel     and 
fitness scaling 

Non-chromatic 
rectangle boards 

(4)        Distribution 
of colors;   #  Red, 
white,     and    blue 
chromatic    rectan- 
gles 

2-D array of 
integer val- 
ues; Genes are 
colored squares 

GA [229] (1998) Uses   "Pitt"   approach 
in     evolving     classifi- 
cation   rules;     Fitness 
depends       on       both 
weighted sum of con- 
junctive attribute test 
and simulated trading 
results;    Chromosoma- 
lly    encoded    weights 
sometimes operated on 
by GA 

Portfolio stock se- 
lection 

(9) Conjunctive at- 
tribute rule tests 

Integer (0,1), 
character (#), 
and real val- 
ues; Genes are 
attribute tests 
and associated 
weights 

GA [243] (1998) Compared different en- 
codings and population 
policies 

Automotive   water 
pump design 

(3)   Exit   pressure; 
Exit   flow;     Input 
power 

Real values and 
grey coded bi- 
nary string 

GA [203] (1998) Four   weight   parame- 
ter combinations exam- 
ined; "Fine-tuning" af- 
ter GA convergence 

45-bar truss design (3) LQR cost; Ro- 
bustness;   Control- 
lability 

Binary string; 
Genes are 
structural and 
actuator vari- 
ables (both 
continuous and 
discrete) 

A.2.3 Nonlinear Fitness Combination Techniques. Nonlinear fitness combina- 

tion is also a scalar aggregation of distinct fitnesses; several EA-based variants have been 

implemented. This aggregation incorporates nonlinear terms which are normally derived 

in some "trial and error" fashion. 

For example, penalty functions penalize solutions when a constraint is not met. Two 

variants are common in EA research: general penalty functions like that defined by Gold- 

berg [126], and transforming constraints "into" objectives. According to Cohon [69] the 

latter method changes the MOP into a single-objective optimization problem. One objec- 

tive is arbitrarily selected for optimization and the other k — 1 objectives are constrained 

to a maximum value represented by e,-, where i = 2,... , k. 
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Penalty functions have been implemented as part of cooperative population searches 

and are thus classified in Sections A.4.3 and A.4.4. Other implemented nonlinear combi- 

nation techniques are now addressed in turn. 

A.2.3.1 Multiplicative Fitness Combination Techniques. Multiplicative fit- 

ness combination is a scalar aggregation of distinct fitnesses where individual objective 

values are combined through multiplication. This technique's general form is mathemati- 

cally represented by: 

$     :     Rn —► R 
k 

/(«.■) = UfM) 
3=1 

(A.7) 

This technique can be used in fitness proportional, tournament, or rank-based selection. 

Table A.3 lists the known multiplicative fitness combination MOEA approaches. 

Table A.3   Multiplicative Techniques 

Approach Description Application Objectives (#) Chromosome 

Multi        Attribute 
Utility           Analy- 
sis             (MAUA)- 
GA      [154,      153] 
(1993) 

Proposes MAUA to de- 
termine fitness function 

None None None 

GA [338] (1996) Probability   of   accep- 
tance is fitness;   Over- 
all fitness is logarithm 
of all multiplied prob- 
abilities; Penalty func- 
tion used 

Two-member truss 
Design 

(6)     Stress    safety 
factor and diameter 
for   each   bar   (4); 
Buckling         safety 
factor; Cost 

Binary string 

A.2.3.2 Target Vector Fitness Combination Techniques. The "target vec- 

tor" technique is a scalar aggregative method which can be thought of as using the "distance 

to the target" as the fitness metric. A DM assigns performance goals to each objective, 

whereupon solutions are evaluated by measuring the distance (over some norm) from their 

respective goals in criteria space. This technique is mathematically represented by: 

$ 

/(a,-)   4    \\[f(ai)-g}W- (A.8) 

A-8 



where g = (g\,... ,gk) is a vector representing the desired goals, W is a weighting matrix 

accounting for differing variance between the k goals, and a is most often the Euclidean 

distance (a = 2) [343]. This technique can be used in fitness proportional, tournament, or 

rank-based selection. Table A.4 lists the known target vector fitness combination MOEA 

approaches. 

Table A.4  Target Vector Techniques 

Approach Description Application Objectives (#) Chromosome 

GA [343] (1992) Attempts    to    achieve Atomic      emission (7)    Atomic   emis- Binary    string; 
desired criterion goals spectroscopy sion   intensities   of Represents 
(goal programming) seven   atomic   ele- 

ments 
NaCl           con- 
centration 
and        current 
intensity 

GA [285] (1994) Attempts    to    achieve 3-Bar truss & Link- (2)  Weight;   Stress Unknown 
desired  criterion goals age  design  &   10- &     (9)    Distances 
(nonlinear    goal    pro- Bar truss (5);         Size      and 
gramming) weight;        Velocity 

change;   Path sen- 
sitivity   (2)   &   (7) 
Weight; Stress (3); 
Displacement      (2) 
Number of beams 

Fuzzy  Logic-Based Fuzzy   logic-based  fit- Beryllium    powder (17)                 Calcu- Binary     string 
Multiobjective ness; Uses NPGA [155] micromechanical lated/reference (266           bits); 
GA [269] (1997) fitness sharing model densification    data 

point deltas 
Genes           are 
model parame- 
ters 

Fuzzy  Logic-Based Fuzzy   logic-based  fit- Copper        powder (6)                   Calcu- Binary     string 
Multiobjective ness; Uses NPGA [155] micromechanical lated/reference (224           bits); 
GA [270] (1997) fitness sharing model densification    data 

point deltas 
Genes           are 
model parame- 
ters 

A.2.3.S Minimax Fitness Combination Techniques. Minimax is a scalar 

aggregative method minimizing the maximum (weighted) difference between the objectives 

and DM-specifled goals. This technique is mathematically represented by: 

$ 

/(a,-)    =      max fj(ai) ~ 9j (A.9) 

where gj is the performance goal to be reached or bettered for objective fj, and Wj is a 

weight indicating the desired search direction in objective space, where Wj is often set to 

II 9j II [107]. This technique can be used in fitness proportional, tournament, or rank-based 

selection. Table A.5 lists the known minimax fitness combination MOEA approaches. 

A-9 



Table A.5  Minimax Techniques 

Approach Description Application Objectives (#) Chromosome 

GA [265] (1993) Proposes supercriterion 
method   of  combining 
objectives            (game- 
theoretic approach) 

None None None 

GA [280] (1994) Maximizes     minimum 
linear          membership 
function value; Special- 
ized EVOPs 

Fuzzy     2-objective 
knapsack:     1-D   & 
4-D 

(2) & (2) Binary string & 
Diploid binary 
string 

GA [58] (1995) Tchebycheff weighting, 
Uniformly   varies   key 
parameter 

Groundwater   con- 
tainmant  monitor- 
ing 

(2) Undetected 
plumes; Contami- 
nated area 

Fixed-length 
integer string 

GA [65, 59] (1995) Objectives optimized in 
turn, then used to opti- 
mize weighted min-max 
formulation 

Robot arm balanc- 
ing 

(4) Joint torque 
(2); Reaction force 
(2) 

Real values 

GA [323] (1995) Original problem fuzzi- 
fied; Max-min formula- 
tion 

Fuzzy    multiobjec- 
tive    double    sam- 
pling 

(3) Cost; Quality; 
Covariance 

Binary string; 
Genes are 
sample sizes 
and acceptance 
numbers 

Fuzzy          Interval 
GA [49] (1997) 

Incorporates     decision 
maker's   (fuzzy)   goals 
into search 

Nonlinear mixed in- 
teger programming 

(2) Numeric opti- 
mization 

Unknown 

A.3   Progressive MOE A Techniques 

The progressive techniques presented in this section involve direct interaction with 

the DM during the EA search process. Either cycles of decision making and search, or 

of search and decision making, are performed in pursuit of acceptable solutions. Both a 

priori and a posteriori techniques may be used in the search portion of this interactive 

decision making process; thus, no specific mathematical representation is given. However, 

as explained in Section A.4, a posteriori techniques provide a set of solutions instead of a 

single one. This situation is often preferable for MOPs. Table A.6 lists the known pro- 

gressive MOEA approaches; papers are cited here only if the authors explicitly mentioned 

DM incorporation in the MOP solution process. 

Table A.6  Interactive Techniques 

Approach Description Application Objectives (#) Chromosome 

Multiple Objective Fonseca's   [111]   rank- Step    response    of (4)   "Reach"   time; Binary    string; 
Genetic  Algorithm ing; Incorporates nich- gas turbine engine "Settle"            time; Genes            are 
(MOGA) [108, 110, ing and  goals  (prefer- Overshoot; Error controller 
114,     115]     (1993, ences) parameters 
1995, 1998) 
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Table A.6   (continued) 

Approach Description Application Objectives (#) Chromosome 

GA [316] (1995) Initial population con- 
tains only solutions in 
Pknown i     DM    selects 
preferred returned solu- 
tions, used as basis for 
further exploration 

None (2)   Numeric   opti- 
mization 

Binary string 

Multiple Objective 
GA [297] (1996) 

Uses                Fonseca's 
MOGA    [108];     Com- 
pares to weighted-sum 
approach 

Meal      production 
line scheduling 

(3)              Rejected 
orders; Batch late- 
ness;        Shift/staff 
balancing 

Permutation 
ordering 

Explorer             [99] 
(1996) 

GUI- and Pareto rank- 
based; Interactive; In- 
corporates user prefer- 
ences and local search 
(hill climbing) 

Floor planning (4)   Area;    Aspect 
ratio; Routing con- 
gestion; Path delay 

5 components: 
Integer string; 
Real values; Al- 
phabet string; 
Binary string; 
Integer string 

Evolutionary 
Co-Design 
(EvoC)   [156,   133] 
(1996,1997) 

Preference info  classi- 
fies   solutions;    Pareto 
ranking on preferences 

Hardware and soft- 
ware co-design 

(3)         Component 
cost; Critical excess 
MIPs;      Feasibility 
factor 

Binary    string; 
Genes           are 
implementa- 
tion   type   and 
processor 

MOGA             [112] 
(1997) 

Specialized EVOPs Non-linear        sys- 
tem    identification 
(polynomial model) 

(7)   Residual  vari- 
ance;       Long-term 
prediction            er- 
ror;      Number    of 
terms;   Model lag; 
Model          degree; 
Auto-correlation; 
Cross-correlation 

Variable length 
integer string 

GA [173, 302, 282, 
281, 175, 176, 174] 
(1997) 

Defines                "fuzzy" 
Pareto          optimality; 
DM    (re)selects   fuzzy 
membership         levels; 
Decomposition    proce- 
dure    and    specialized 
coding  ensure  feasible 
solutions;        Minimax 
approach 

Multiobjective   0-1 
Programming 

(3) Binary string 

GP [273] (1997) Incorporates    problem 
domain code;  Extends 
MOGA [114] to the GP 
domain 

Nonlinear     system 
polynomial models 

(7)      Number      of 
terms;    Model   de- 
gree;     Model   lag; 
Residual           Vari- 
ance;       Long-term 
prediction      error; 
Auto-correlation; 
Cross-correlation 

Unknown 

GA [226] (1998) Uses      domain-specific 
representation         and 
operators,        heuristic 
initialization,  dynamic 
rescheduling,            and 
shared   (human)    con- 
trol; Linearly combines 
the objectives 

Field              service 
scheduling &   Mil- 
itary    land    move 
scheduling 

(7)       [All      costs] 
Missed           target, 
Travel,             Slack, 
Return           home, 
Parts    order,    Un- 
scheduled,       Skills 
mismatch    &     (2) 
[Both  costs]   Stag- 
ing; Link overuse 

"Ordered 
pair;"       Genes 
are          indices 
into      resource 
and        tasking 
lists   &   String 
based;      Genes 
are       resource 
mappings 
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A. 4    A Posteriori MOE A Techniques 

A Posteriori MOEA techniques perform an MOP search process resulting in a set of 

identified solutions for DM selection. These techniques include both independent sampling 

and cooperative population search. We agree with Horn [152] that these approaches, 

whether implicitly or explicitly, are seeking the Pareto optimal solution set denoted by 

Ptrue ■ By definition, this set contains all possible optimal solutions - assuming a rational 

DM. Once a "satisfactory" Pknown is discovered for a particular problem instance, a new DM 

(e.g., a new production supervisor) does not require a repeated search. Also, if Pknown is 

"small enough" the additional overhead incurred by DM interaction is perhaps unnecessary. 

A.4-1 Independent Sampling Techniques. Independent sampling is a technique 

using multiple single-criterion searches; each individual search optimizes different objective 

aggregations. Over time, Pknown and PFknown emerge and are presented to the DM, as 

Ptne and PFtrue are often unknown for problems of any complexity. These techniques are 

mathematically represented by: 

*i 

V   =   {ai\Vai,ai E Pknown} , (A.10) 

where $; is some fitness function assigning solution fitness for MOEA "run" i (e.g., the 

multiple functions' associated weights change between runs), and P (i.e., Pknown ) is returned 

to the DM where each a; is the optimum found in run i. Table A.7 lists the known 

independent sampling MOEA approaches. 

Table A.7   Independent Sampling Techniques 

Approach Description Application Objectives (#) Chromosome 

GA [117] (1985) Composite     strategies 
sample    the    trade-off 
surface 

Silicon layout com- 
paction 

(3)   Bounding box 
size; Design rule vi- 
olations; Rectangle 
placement 

Variable 
length;    Genes 
are lists of lay- 
out constraints 

GA [220] (1993) Multiple      GA      runs 
use   different   function 
weights;           Crowding 
replacement 

Radar      absorbent 
material      coating 
design 

(2)  Coating reflec- 
tion; Coating thick- 
ness 

Binary string; 
Genes are ma- 
terial type and 
thickness 

Multiple  Objective 
GA [272] (1994) 

Proposes multiple  GA 
runs optimizing one cri- 
terion at a time, then 
varying the constraints 

None None None 
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Table A.7  (continued) 

Approach Description Application Objectives (#) Chromosome 

GA [58] (1995) Tchebycheff weighting, 
uniformly varies key 
parameter 

Groundwater moni- 
toring 

(2) Undetected 
plumes; Contami- 
nated area 

Fixed-length 
integer string 

GA [48] (1995) Multiple runs uni- 
formly varies weights; 
Fitness scaling 

Firing    angles    in 
railway       traction 
substations 

(2) Power supply; 
Uniform load shar- 
ing 

Binary string 

GAA                   and 
GAA2 [322] (1995) 

Hybrid GA/SA; Lin- 
early normalized 
weighted functions 
uniformly varied over 
several runs 

Economic- 
Environmental 
Power Dispatch 

(2) Cost; Weighted- 
sum of pollutants' 
emissions 

Real-values; 
Genes are gen- 
erator loadings 

A.4-2    Criterion Selection Techniques. Criterion selection techniques are the 

first discussed to directly utilize an MOEA's population. Here, fractions of succeeding 

populations are selected using various of the k objectives. These techniques are able to find 

multiple members of Pknown within a single EA run, and are mathematically represented 

by: 

*     :     P —♦ P' 

P    =     {a;|Va;,a; G Pknown} , (A.ll) 

where $ is some generation transition function selecting solutions based on their perfor- 

mance in some objective, and P (i.e., Pknown) is returned to the DM. Table A.8 lists the 

known criterion selection MOEA approaches. 

Table A.8   Criterion Selection Techniques 

Approach Description Application Objectives (#) Chromosome 

Vector              Eval- 
uated                   GA 
(VEGA) [288, 289] 
(1984) 

jr of new population se- 
lected using each of the 
k objectives 

None (2)   Numeric   opti- 
mization 

Binary    string; 
Contains genes 
and     objective 
performance 
information 

Vector     Evaluated 
GA  (VEGA)  [290] 
(1985) 

jr of new population se- 
lected using each of the 
k objectives 

Multiclass   pattern 
discrimination 

(2)(3)(4)(5)Num- 
ber of classes 

Unknown; 
Genes are rules 

GA [117] (1985) One criteria randomly 
selected as comparator 

Silicon layout com- 
paction 

(3)   Bounding box 
size; Design rule vi- 
olations; Rectangle 
placement 

Variable 
length;     Genes 
are lists of lay- 
out constraints 

ES [189] (1990) Objectives'   associated 
probabilities used as se- 
lection  criteria;   Poly- 
ploid individuals 

None (2)   Numeric   opti- 
mization 

Both    decision 
and       stepsize 
variables    have 
dominant 
and      recessive 
chromosomes 
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Table A.8   (continued) 

Approach Description Application Objectives (#) Chromosome   | 

ES (fi+X) [5] (1992) Assigns    "gender"    to Pipeline    construc- (2) Cost; Biodiver- Binary string 
each   function;     Each tion sity destruction 
sex judged only on its 
respective function; No 
results presented 

GA [251, 34] (1994) VEGA isolates feasible Gas turbine engine (3) Metal tempera- Unknown 
values   of   constrained cooling hole geome- ture;   Cooling hole 
parameters;  Secondary try area;  Coolant flow 
GA searches hypercube rate 
based on returned val- 
ues 

GA [32] (1994) Specialized    crossover; Adaptive       image (2)                 Global Binary    string; 
GA     population     se- segmentation (weighted          sum Genes   are   fit- 
lected    from    training of          edge-border ness,         image 
database;   One,   some, coincidence       and conditions, and 
or  all   GA   population boundary         con- parameters; 
members replace least sistency) ;        Local Only    parame- 
fit      database     mem- (weighted   sum   of ters affected by 
bers; VEGA selection; pixel classification, EVOPs 
Implies  only  nondom- object overlap and 
inated  GA  population object contrast) 
solutions retained 

Multiobjective Both      nondominated- Transonic       airfoil (2)   Mach  number; Binary    string; 
GA [331] (1997) and     roulette     wheel 

(one  objective)- based 
selection 

design Lift coefficient Genes  are  air- 
foil parameters 

Nash GA [254, 253] Incorporates          Nash Electromagnetic (2) RCS 1; RCS 2 Binary    string; 
(1997) equilibrium      concept; 

Population   split    into 
k; Each subpopulation 
optimizes         solutions 
with respect to a differ- 
ent   objective   (subject 
to    different    solution 
constraints) 

backscattering Genes  are   an- 
tenna locations 

Multiobjective "Two-branch"   tourna- Non-collocated (2) Control error of Binary    string; 
GA [237] (1998) ment selection; Individ- control Disk   1   rotational Genes           are 

uals  compete  in   only position;  Same for controller gains 
one of 2  tournaments; Disk 2 
Linear    penalty    func- 
tions 

Multiobjective "Two-branch"   tourna- Satellite   constella- (2)      Constellation Binary string 
GA [98] (1998) ment selection; Individ- 

uals  compete once  in 
each of 2 tournaments; 
External penalty func- 
tions 

tion design altitude;     Number 
of satellites 

Multiobjective "Two-branch"   tourna- Two   10-bar   truss (2)  Weight;   Verti- Binary string 
GA [76] (1998) ment   selection;    Indi- 

viduals   compete   once 
in  each  of  2   tourna- 
ments;   Scaled penalty 
functions 

designs cal displacement 

Parallel   GA   [170] "fc-branch"         tourna- Airfoil optimization (2)      Drag      coef- Binary    string; 
(1998) ment selection; Parallel 

implementation;       In- 
tegrated  with   XFOIL 
and WOPWOP codes; 
Penalty           functions 
enforce constraints 

ficient;          Overall 
Averaged      Sound 
Pressure Level 

Gray coded 
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Table A.8   (continued) 

Approach Description Application Objectives (#) Chromosome 

ES [195] (1998) "Predator-prey" 
model;             Predators 
"attack" based on one 
of k objectives 

None (2) Numeric opti- 
mization 

Real values 

GA [62] (1999) Constraints cast 
as objectives; Uses 
VEGA [289] selection 

Hydrostatic  thrust 
bearing & Belleville 
spring   &    Combi- 
natorial         circuit 
&       Himmelblau's 
problem  h   10-bar 
truss 

(8) & (8) & (9) & 
(4) & (23) 

Real values 

A.4-3 Aggregation Selection Techniques. Aggregation selection techniques di- 

rectly utilize an MOEA's population capability. Here, succeeding populations are selected 

using solution fitness computed by either linear or nonlinear fitness combination tech- 

niques (which are not necessarily identical for each evaluated solution, i.e., multiple $s 

exist). Thus, multiple members of Pknown may be found within a single MOEA run. These 

techniques are mathematically represented by: 

$     :    P —► P' 

P     =     {a;|Va;,a; G Pknown} (A.12) 

where $ is some generation transition function selecting solutions based 

mance using an associated $ , and P (i.e., Pknown) is returned to the DM 

the known aggregation selection MOEA approaches. 

Table A.9  Aggregation Selection Techniques 

on their perfor- 

. Table A.9 lists 

Approach Description Application Objectives (#) Chromosome 

GA [140] (1992) Weighted sum; Weights 
are         chromosomally 
encoded;        Compares 
fitness     sharing     (ap- 
plied only to weighting 
variables)     and     two 
VEGA [289] variants 

Static and dynami- 
cally loaded 10-bar 
truss & Wing Box 

(2)           Structural 
weight;        Vertical 
displacement & (2) 
Structural   weight; 
Natural frequencies 

Genes are de- 
sign variables 
and weights; 
Mix of con- 
tinuous and 
discrete alleles 

Multi-Objective 
GAs     [230,     231] 
(1995) 

Randomly        assigned 
weights;   Pareto  elitist 
selection 

None (2)      Numeric     &; 
Scheduling & Rule 
selection examples 

Binary string 
& Permuta- 
tion ordering 
& Tri-Valued 
string 

ES [335] (1996) Fuzzy controller selects 
each solution's evalua- 
tion function 

Railway      network 
scheduling 

(2)   Cost;   Waiting 
time 

Unknown 
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Table A.9   (continued) 

Approach Description Application Objectives (#) Chromosome 
Multi-Objective Randomly        assigned Flowshop   schedul- (3)          Makespan; Integer permu- 
Genetic           Local weights;   Elitist   selec- ing Maximum         tar- tation ordering; 
Search             Algo- tion;   Local  search in diness;             Total Genes are jobs 
rithm    [163,    164] direction     of     current flowtime 
(1996, 1998) weights 
Non-Generational Non-generational selec- None (2)    Numeric    op- Binary string 
GA (NGGA)  [324] tion; Fitness calculated timization    (Effec- 
(1997) incrementally; k objec- 

tives transformed to 2; 
Weighted sum of objec- 
tives 

tively       minimizes 
domination        and 
niche count) 

Neighborhood Indexed solutions; N — Air    quality   man- (2)     Cost;       Con- Real values 
Constraint 1  objectives converted agement straint satisfaction 
Method  [205,  204] into    constraints,    the 
(1997, 1998) other optimized;  Con- 

straint    values    varied 
among  solutions;   Re- 
stricted  mating  based 
on "neighborhood" 

GA [45] (1997) Constraints    converted 
into   functions;    Both 
efficient and dominated 
solutions        determine 
search direction 

None (2)   Numeric   opti- 
mization   (Original 
function;          Con- 
straints) 

Real values 

ES   (ß + A)   [356] Fitness        determined Multicriteria    pro- (2) Processing cost; Permutation 
(1997) by     objective     values duction        process Processing time integer    order- 

and adaptive objective planning ing;           Genes 
value hyperplane are        selected 

nodes for some 
operation 

GA [75] (1997) Kreisselmeier- 3-bar truss & Rotor (2) Cost; Weight & Binary    string; 
Steinhauser      function system design (2)   Power;    Rotor Genes are  dis- 
gives     fitness;       Mul- system weight crete,    integer, 
tiple    objectives    and and continuous 
constraints     combined variables 
into one unconstrained 
function 

Multi-Objective Randomly        assigned Fuzzy      rule-based (2)  Number of if- Binary    string; 
Genetic           Local weights;    Elitist   selec- system  rule   selec- then rules; Number Genes are rules 
Search              Algo- tion;   Local  search  in tion of correctly classi- 
rithm [165] (1998) direction    of    current 

weights 
fied patterns 

GA [123] (1998) Specialized     encoding Topological      Net- (2)         Connection Prüfer  number 
and   selection   EVOP; work Design cost; Message delay encoding;     In- 
Incorporates    adaptive teger        string 
objective       evaluation uniquely 
hyperplane   [356]    and encodes            a 
auxiliary    bi-objective spanning-tree 
problem 

GA      [354,      353] Adaptive         objective Operational ampli- (7)   Gain;    GBW; Integer   string; 
(1998) weights;      Values    set fier design Linearity;      Power Genes are tran- 

with    respect    to    ob- consumption; Area; sistor sizes, cur- 
jective value and user Phase           margin; rent,    and   ca- 
goals Slew-rate pacitors 

NSGA [85] (1998) Uses       NSGA       and Welded   beam   de- (2) Cost;   End de- Implies real val- 
weighted     goal      pro- sign flection ues 
gramming;      Adaptive 
objective weights 
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A.4-4 Pareto Sampling Techniques. Pareto sampling directly utilizes an MOEA's 

population capability. Some approaches also incorporate a secondary population storing all 

Pareto optimal solutions yet found during MOEA execution. When using these methods, 

the generational population (possibly) holds several solutions of Pknown and at least one 

member in Pcurrent (0- The secondary population is periodically updated to remove solu- 

tions which are no longer nondominated. These techniques explicitly use Pareto concepts 

in the selection process such that Pareto solutions are given preference over dominated 

solutions, but are treated equivalently among themselves. 

Two types of Pareto fitness assignment are widely used. The first method, proposed 

by Goldberg [126], is mathematically (recursively) represented by: 

$     :     R» —{1,...,,,} 

'  1    -.(/(a,-)!*  /(aO)VjG {!,...,/*} 
/(«.•)    =    { (A.13) 

<t>   -(/(«,) P< /(a,-))Vi6{l,...,Ai}|{/:*(/(a/))<^}, 

where /(a,-) p<  /(a,) if and only if 

VAr G {1,.. • , n} fk(aj) < /fc(oj) A 3* G {1,... , n} : fk(aj) < /fc(o.-) , 

and where the symbol -< denotes logical negation. In words, this method identifies all 

nondominated solutions within some set and assigns them rank 1. These are then removed 

and all nondominated solutions of the reduced solution set identified. These are then 

assigned rank 2. The process continues until the entire population is ranked. 

The second technique, proposed by Fonseca and Fleming [111] is mathematically 

represented by: 

$    :    RB—{0,1,...,M-1} 
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where % (condition) = 1 if the condition is true, else 0. In words, this method assigns each 

solution a rank equal to the number of solutions it's dominated by. Thus, all nondominated 

solutions are assigned rank 0. 

Several Pareto-based selection approaches have been implemented, selecting solutions 

based (at least in part) upon their domination status. These techniques are mathematically 

represented by: 

<S    :    P^P' 

P    =     {ai\\/üi,ai 6 Pknown} , (A.15) 

where *P is some generation transition function selecting solutions based on Pareto opti- 

mality, and P (i.e., Pknown) is returned to the DM. 

A.4-4-1 Pareto-Based Selection. These approaches base selection upon each 

solution's assigned fitness, which is derived primarily via Pareto ranking. They are char- 

acterized as such by their lack of Pareto rank-and niche-, deme-, or elitist-based selection 

characteristics. Table A.10 lists the known Pareto-based selection MOEA approaches. 

Table A.10   Pareto Selection Techniques: Ranking 

Approach Description Application Objectives (#) Chromosome 

Thermodynamical 
Genetic  Algorithm 
(TDGA) [181, 228] 
(1995) 

Simulated       annealing 
concepts   used   in   se- 
lection;    Attempts   to 
balance        population 
diversity   and   fitness; 
Goldberg's [126]  rank- 
ing 

None (2)   Numeric   opti- 
mization 

Binary string 

Constrained      Op- 
timization            by 
Multi-Objective 
Genetic Algorithms 
(COMOGA)    [309] 
(1995) 

Pareto     ranks     solu- 
tions     by     constraint 
violations;           Binary 
tournament      selection 
uses    either    adapting 
probability     of     pipe 
cost or Pareto rank as 
criterion 

Gas network design (2)           Constraint 
violation;   Network 
pipe cost 

Variable  cardi- 
nality  (number 
of   alleles)    in- 
teger       string; 
Genes            are 
pipes'     diame- 
ters 
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Table A. 10   (continued) 

Approach Description Application Objectives (#) Chromosome 

Genetic           Algo- Constraints   cast   into Microprocessor De- (3) Hardware bud- String   of   Ar- 
rithm          running objectives;      Solutions sign get;    Power  factor chitectural 
on    the    INternet ranked first by Pareto budget; Cycles per Parameters: 
(GAIN)            [307] optimality, then lexico- instruction Cache          size, 
(1995) graphically Cache          line 

size,         Cache 
associativity, 
Write       buffer 
size, Number of 
issued   instruc- 
tions per clock 
cycle 

Multiobjective Integrated               with Pressurized    water (3)  Boron contam- Integer    matri- 
GA [250] (1995) FORMOSA-P;     Gold- reactor reload core ination,   Discharge ces;   Genes are 

berg's [126] ranking design burnup;         Power 
peaking 

fuel     assembly 
layouts,    burn- 
able        poison 
loadings,     and 
orientations 

Multiobjective Modified Pareto rank- Discrete time con- (2)                Steady- Binary    string; 
GA   (MGA)   [202] ing       and       selection trol system design state/robustness Genes are tun- 
(1995) schemes controller;      Func- 

tion            response 
controller 

ing    parameter 
radii,      angles, 
and coefficients 

GA [101] (1995) Modified Pareto rank- Aircraft flat  panel (4)     Panel    buck- Unknown 
ing scheme design ling; Bay buckling; 

Weight;      Number 
of      frames      and 
stifleners 

GA [244] (1995) Maintains    population Multiple disc brake (2)    Brake    mass; Unknown 
of    Pareto     solutions; design Stopping time 
New   solutions'   fitness 
determined    by    min- 
imum          (phenotype) 
distance      from      any 
current solution 

Multi-Criteria Maintains    population Non-linear   control (2)  Control input; Binary string 
GA [187, 188, 186, of    Pareto     solutions; system design State   variable  de- 
245]    (1996,    1996, New   solutions'  fitness scription 
1996, 1995) determined    by    min- 

imum         (phenotype) 
distance      from      any 
current solution 

GA [296] (1996) Goldberg's [126] rank- Spinning     produc- (2)  Yarn strength; Binary    string; 
ing;     GA    applied   to tion process Yarn elongation Genes           are 
backpropagation neural neural           net 
network inputs 

Diploid   GA   [334] Separately     minimizes None (3)   Numeric   opti- Implies real val- 
(1996) each   function,    Dom- 

inated     solutions     re- 
moved from  combined 
populations 

mization ues 

ES    [36,    38,    39] Models   sharing   when Controller design (2) Rise time; Set- Real values 
(1996) Pcurrent grows               too 

large;      Method    vari- 
ation          incorporates 
constraint handling 

tle Time 

A-19 



Table A. 10   (continued) 

Approach Description Application Objectives (#) Chromosome 
Implicit     Multiob- 
jective    Parameter 
Optimization    Via 
Evolution         (IM- 
PROVE)            [12] 
(1996) 

Pareto-based         tour- 
nament           selection; 
Prevents           "clones" 
within a generation 

Wing design (3)     Wing     area; 
Wing lift; Lift/drag 
ratio 

Binary string 

Pareto    GA    [257, 
258] (1996) 

Employs toroidal grid; 
Local        Pareto-based 
tournament    selection; 
Specialized     crossover 
EVOP 

Airfoil   &   Aircraft 
propulsion   system 
design 

(2)   Lift;    Drag  & 
Fuel   consumption; 
Fuel   consumption; 
Excess power 

Binary string & 
Binary string 

GA [294] (1996) Goldberg's [126] Pareto 
ranking;     Incorporates 
local search; Fitness de- 
rived via rank and fea- 
sibility 

Pump     scheduling 
model 

(2)                       En- 
ergy/constraint 
violation; Switches 

Binary    string; 
Genes           are 
pump  switches 
(on or off) 

GA [147] (1996) Initial           population 
seeded with local  op- 
timum    and    mutated 
copies 

Finite  impulse re- 
sponse filter design 

(2)    Phase   linear- 
ity error; Response 
magnitude error 

Binary string 

Multiobjective 
structured         GA 
(SGA) [317] (1996) 

Used in H°° optimiza- 
tion;      Control    genes 
(de)activate  coefficient 
genes;   Uses   Fonseca's 
ranking [114] 

Controller design (4) Weighting func- 
tion values 

Binary string 

GP       [193,      192] 
(1996,1995) 

Implies "standard" GP List      construction 
(using simple data 
structures) 

(2)     CPU     usage; 
Memory usage 

Unknown 

ES [37] (1997) Adds several classes of 
constraint violations in 
ranking infeasible indi- 
viduals 

None (2)   Numeric  opti- 
mization 

Real       values; 
Genes are wing 
characteristics 

Parallel          Multi- 
objective    GA    [3] 
(1997) 

Unspecified         Pareto 
ranking scheme 

Pairwise         object 
recognition param- 
eter selection 

(3)  Histogram dis- 
tance; Variant set; 
Histogram area 

Unknown 

GA [137] (1997) Specialized dominance 
definition; 224 decision 
variables 

Automotive   steer- 
ing box design 

(6) Assembly cost; 
Assembly         cycle 
time; Product relia- 
bility; Maintenance 
cost;      Production 
flexibility;          Re- 
design/modification 
flexibihty 

Implies mix of 
continuous and 
discrete     deci- 
sion variables 

GA [287] (1997) Goldberg's              [126] 
ranking;         Integrated 
with  two  local  search 
schemes;      Progressive 
penalties 

Water              pump 
scheduling 

(2)    Energy    cost; 
Pump switches 

Binary string 

Pareto  Converging 
GA  (PCGA)  [183] 
(1997) 

Rank-ratio  histograms 
indicate     convergence; 
Steady-state        imple- 
mentation 

Pattern-space  par- 
titioning 

(6)       Hypersphere 
overlap;        Hyper- 
sphere          dimen- 
sionality;          Data 
point        inclusion; 
Hypersphere    clas- 
sification          rate; 
Partition         com- 
pactness;   Included 
patterns 

Binary string 

A-20 



Table A.10   (continued) 

Application Approach Description Objectives (#) Chromosome 

4-bar pyramid 
truss & 72-bar 
space truss & 4-bar 
plane truss 

Multiobjective 
GA [52] (1997) 

Fuzzy logic penalty 
function transforms 
MOP into uncon- 
strained one; Uses 
bounded Pknown 

(2) Structural 
weight; Con- 
trol effort & (2) 
Structural weight; 
Strain    energy    & 
(3) Structural 
weight; Outer and 
inner node vertical 
displacement 

Binary string 

Pareto    GA     [333] 
(1997) 

Both nondominated-, 
random walk-, and 
roulette wheel (one 
objective)- based 
selection 

Transonic       airfoil 
design 

(2)  Mach  number; 
Lift coefficient 

Binary string; 
Genes are air- 
foil parameters 

MOGA [8] (1998) Proposes use of Fon- 
seca's [108] MOGA; 
Uses simulation to 
determine performance 
criteria 

Fuzzy  logic  traffic 
signal controller 

(3) CO emissions; 
NOa; emissions; 
Mean travel time 

Unknown 

GA [332] (1998) Hybridized with con- 
jugate gradient-based 
local search; Acts like 
specialized mutation 
EVOP 

Airfoil design (2) Drag; Pitching 
moment 

Real values; 12 
design variables 

Pareto   Converging 
GA [184] (1998) 

Uses variable length 
chromosomes; Seeds 
initial population; In- 
corporates specialized 
search heuristics 

Pattern space par- 
titioning 

(7)      Number      of 
hypershpheres; 
Learning com- 
plexity; Decision 
surface regularity; 
Included class 
patterns; Included 
patterns; Partition 
overlap; Surface 
area 

Implies real val- 
ues 

A.4-4-% Pareto Rank- and Niche-Based Selection. These approaches base 

selection upon each solution's assigned fitness, derived via Pareto ranking and shared 

fitness (see Goldberg [131] and Deb [82] for an in-depth fitness sharing explanation). Single 

objective EAs use shared fitness and niching to find and maintain multiple subpopulations 

defining multiple optima. Although the Pareto front is a single optima it is composed 

of at most an uncountably infinite number of vectors. Sharing is thus used in MOEAs to 

(attempt to) maintain a population uniformly spread along the Pareto front (Section 3.3.2.3 

discusses the two major MOEA fitness sharing methods in detail). Table A.11 lists the 

known Pareto ranking- and niching-based MOEA approaches. 
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Table A.11   Pareto Selection Techniques: Ranking and Niching 

Approach Description Application Objectives (#) Chromosome 

Multiple Objective 
Genetic  Algorithm 
(MOGA) [108, 110, 
114]    (1993,    1995, 
1998) 

Fonseca's   [111]   rank- 
ing; Incorporates nich- 
ing and goals (prefer- 
ences) 

Step    response    of 
gas turbine engine 

(4)   "Reach"   time; 
"Settle"           time; 
Overshoot; Error 

Binary    string; 
Genes           are 
five    controller 
parameters 

Nondominated 
Sorting               GA 
(NSGA)            [306] 
(1994) 

Assigns     and     shares 
dummy     fitnesses     in 
each     front;        Gold- 
berg's [126] ranking 

None (2)   Numeric   opti- 
mization 

Binary string 

Niched          Pareto 
GA  (NPGA)  [155] 
(1994) 

Specialized         Pareto 
domination        tourna- 
ments 

Groundwater   con- 
tainmant   monitor- 
ing 

(2)     Plumes     de- 
tected;        Average 
volume detected 

Binary    string; 
Genes are x, y, 
z coordinates 

Pareto    GA    [221] 
(1995) 

Uses the NSGA [306] Electromagnetic 
absorber design 

(2) Absorber layer 
thickness;   Electro- 
magnetic reflection 

Binary    string; 
Genes           are 
layer's      mate- 
rial   type   and 
thickness 

NSGA [87] (1995) NSGA    [306];      Com- 
pares  real  valued  GA 
with      simulated     bi- 
nary  crossover against 
binary encoded GA 

Welded   beam  de- 
sign 

(2)  Cost;   End de- 
flection 

Real values 

NSGA [340] (1996) Uses  the NSGA  [306]; 
Population size of 8,000 

Microwave          ab- 
sorber design 

(2) Thickness; Re- 
flectance 

Unknown 

GP [194] (1996) First   finds   individual 
"passing"     all     tests, 
then     uses     multiob- 
jective   fitness;     Uses 
variant of Horn's [154] 
fitness niching 

Dyck         language 
problem & Reverse 
Polish calculator 

(2) # of correct an- 
swers;    CPU   time 
&  (6) # of correct 
answers  (5);   CPU 
time 

Programming 
primitives 

MOGA     [55,     54] 
(1996) 

Uses                Fonseca's 
MOGA    [114];     Tran- 
scription activates only 
certain genes 

Gas turbine engine 
design 

(9)   Rise-time   (2); 
Settling-time     (2); 
Overshoot          (2); 
Channel (2);   Con- 
troEer complexity 

Integer string 

MOGA [53] (1996) Uses                  Fonseca's 
MOGA [114] 

Electromagnetic 
suspension   control 
system 

(7)        Air        gap; 
Passenger cabin ac- 
celeration;   Control 
voltage;  Maximum 
test   result    values 
(3); Unknown 

Real values 

Reduced       Pareto 
Set           Algorithm 
(RPSA) [77] (1997) 

Increased   selection   of 
Pcurrent ;   Pareto  opti- 
mal   solutions   ranked 
according      to      niche 
count 

Polymer Extrusion (4)    Mass    output; 
Melt   temperature; 
Screw            length; 
Power consumption 

Unknown 

Multiple     Criteria 
GA (MCGA) [319] 
(1997) 

Selection   draws   from 
current and secondary 
population; Specialized 
EVOPs 

Containership load- 
ing 

(4)          Proximity; 
Transverse     center 
of gravity; Vertical 
Center of Gravity; 
Unloads 

Integer    string; 
Genes are pos- 
sible (available) 
placement loca- 
tions 

Multiple      Criteria 
GA (MCGA) [320] 
(1997) 

Indirect             chromo- 
some      representation; 
Simulation-derived 
fitness 

Scheduling      ship- 
yard plate cutting 

(2)          Makespan; 
Penalty costs 

Integer   string; 
Genes are ma- 
chine      choices 
and job lists 

GA [210] (1997) Parallelized;           Inte- 
grated with CFD  and 
CEM      codes;        Uses 
NSGA       [306]       with 
tournament selection 

Two-dimensional 
airfoil design 

(2)     Drag     coeffi- 
cient;      Transverse 
magnetic         radar 
cross section 

Real values 
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Table A. 11   (continued) 

Approach Description Application Objectives (#) Chromosome 

Multiobjective Uses                Fonseca's Cascade airfoil de- (3)   Pressure   rise; Real values 
GA      [242,      238] MOGA   [108];    Elitist sign Flow turning angle; 
(1997) selection;      Integrated 

with         Navier-Stokes 
code 

Pressure loss 

MOGA             [178] Uses                Fonseca's Rule-based        air- (3)    Engine    cost; Integer   string; 
(1997) MOGA      [108];        No plane design Fuselage            cost; Genes   are   en- 

apparent  DM  interac- Wing cost gine,    fuselage, 
tion and   wing   pa- 

rameters 
MOGA             [293] Restricts mating; Uses Active       magnetic (11)   Steady   state Gray coded bi- 
(1997) "extra"   objectives   to bearing    controller error (2);   Compli- nary string; 402 

retain diverse popula- design ance   (2);    Current bits 
tions (2);   Noise  suscep- 

tibility   (2);    Com- 
plexity, Eigenvalue, 
Simulation length 

Structured    messy Begins      with      1-bit Water pipe network (2) Benefit; Cost Integer   string; 
GA [142] (1997) strings   and   gradually 

increases   length   each 
generation;     Evaluates 
only     active     decision 
variables;    One   objec- 
tive    is    weighted-sum 
of four  others;   Gold- 
berg's     [126]     Pareto 
ranking 

rehabilitation Genes are pipe 
and       decision 
numbers 

NSGA [329] (1997) Uses      NSGA      [306]; Investment portfo- (2)    Expected   re- Binary string 
Compares            results lio optimization turn; Risk 
to       those       obtained 
via    a     weighted-sum 
technique 

Multi-Objective (/i + A)   elitist   strat- Voltage     reference (2) Room tempera- Implies real val- 
EP   (MOEP)   [232] egy;     Pcurrent solutions circuit     parameter ture reference volt- ues 
(1998) selected      with      high 

probability 
optimization age;     Temperature 

variation 
MOGA             [240] Uses    Fonseca's    [108] Transonic wing de- (2) Lift; Drag Real values 
(1998) MOGA;         Integrated 

with Navier-Stokes and 
Squire-Young codes 

sign 

Multi-Objective Uses    Fonseca's    [108] Model      derivation (4)      RMS      error; Unknown 
Genetic             Pro- MOGA;              Results for distillation col- Residual            vari- 
gramming compared    to    single- umn   and   cooking ance; Residual and 
(MOGP)          [151] objective GP on same extruder output correlation; 
(1998) problems Model string length 
Strength       Pareto Actively uses secondary None (2,3,4)     Combina- Binary    string; 
Evolutionary Algo- population in fitness as- torial optimization Genes are items 
rithm (SPEA) [358] signment and selection; example            (0/1 present   in   ith 
(1998) Uses  clustering to  re- 

duce secondary popula- 
tion size; Pareto-based 
niching parameter 

knapsack problem) knapsack 
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Table A. 11   (continued) 

Approach Description Application Objectives (#) Chromosome 
Multi-level 
MOGA [56] (1998) 

Uses    Fonseca's    [108] 
MOGA to develop sat- 
isfactory controllers at 
discrete design points; 
Another  MOGA   then 
uses   Pknown to   deter- 
mine satisfactory over- 
all controller 

Gas   turbine   con- 
troller design 

(7) [1st MOGA] 
Pole magnitude; 
Gain and phase 
margin; Rise and 
settle time; Over- 
shoot; Error & [2nd 
MOGA] (5) Rise 
and settle time; 
Overshoot; Error; 
Temperature 

Real       values; 
Genes            are 
engine       gains 
and  time  con- 
straints 

Modified 
NSGA [224] (1998) 

Weighted        penalties 
used in each objective 
function;      Simulation 
determines        chromo- 
some fitness 

Industrial nylon  6 
reactor 

(2) Reaction time; 
Cyclic concentra- 
tion 

Binary    string; 
Genes are con- 
trol       variable 
history        and 
value 

MOGA           [148]'2 

(1998) 
Uses    Fonseca's    [108] 
MOGA 

Robot         sensory- 
action            neural 
network design 

Unknown Unknown 

NSGA [84] (1999) Defines                 NSGA 
specifics;          Discusses 
proposed    MOP     test 
problems [83] 

Welded   beam   de- 
sign 

(2) Cost; End de- 
flection 

Real values 

GA [286] (1999) Implies  EVOPs   guar- 
antee feasible solutions; 
Compares 10 runs using 
different parameter val- 
ues 

Pulp and paper mill 
operation 

(2) Energy con- 
sumption; Produc- 
tion rate change 

Real values 

A.4-4-3 Pareto Deme-Based Selection. The traditional EA island model is 

composed of several separate demes or subpopulations. The underlying idea is that these 

separate subpopulations are divisions of one overall population, but each subpopulation is 

evolving (somewhat) independently of the others. Each deme is interconnected by some 

defined topology or geographic structure used for communication; these communication 

channels are normally used for the occasional migration of individuals between demes. 

At one extreme of the island model ( all demes are fully interconnected) the island 

model mimics a single, large population. At the other extreme where communication is 

minimized the model mimics several independent EA trials. The island model can be 

executed on a sequential processor but its power when using multiple processors is readily 

apparent. 

We define Pareto deme-based selection as a technique whereby an MOEA uses both 

a solution's Pareto ranking and its location within some sort of geographical structure 

2Abstract only; the article is in Japanese. 
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imposed upon the population as criteria for selection. Table A.12 lists the known Pareto 

deme-based selection MOEA approaches. 

Table A.12   Pareto Selection Techniques: Demes 

Approach Description Application Objectives (#) Chromosome 

GA   with    Redun- 
dancies [21] (1995) 

85% of new population 
selected via local geo- 
graphic mating;  15 % 
via binary tournament; 
Parallelized 

Mass-Transit Vehi- 
cle Scheduling 

(2)      Number     of 
vehicles;     Number 
of     "deadheading" 
trips 

Integer matrix; 
Permutation 
ordering; Genes 
are vehicles as- 
signed   a   trip; 
Recessive genes 
used 

Genetic    Program- 
ming [191] (1995) 

Pareto-based         tour- 
nament     and     demic 
selection;      Non-elitist 
fitness based on primi- 
tives "passing" a series 
of test functions 

Evolution of prim- 
itives implementing 
a FIFO queue 

(6)      Number      of 
tests (5) passed by 
specific    functions; 
Number     memory 
cells used 

Program  trees; 
Genes            are 
queue          and 
shared memory 
primitives 

Hybrid   GA    [256] 
(1995) 

Local geographic selec- 
tion  via   Pareto   tour- 
naments;    Hybridized; 
Parallelized 

Aerodynamic 
shape    parameteri- 
zation 

(2) Pressure distri- 
butions 

Integer     string 
and real-valued 
vector 

GA [2] (1997) Island      model      with 
Pareto               ranking; 
EVOPs     operate     on 
sub-populations,       not 
individuals 

Pairwise         object 
recognition param- 
eter selection 

(3) Histogram dis- 
tance; Variant set; 
Histogram area 

Array;     Genes 
are   histogram, 
type,   and  dis- 
tance 

Hybrid   GA    [291] 
(1997) 

Problem             specific 
heuristics   and   opera- 
tors   combine   various 
constraints     and     ob- 
jectives   within   single 
optimization           step; 
Pareto concepts select 
desirable shapes; Gene 
pool       recombination; 
Parallel "island model" 
implementation 

Facility    &    VLSI 
macro-cell layout 

(2)    Minimal   flow 
cost;       Admissible 
shape     constraints 
& (2) Layout area; 
Routing 

Binary    slicing 
tree;         Genes 
are           blocks 
denning layout 
or           packing 
pattern 

Virtual             Sub- 
population         GA 
(VSGA)            [262] 
(1998) 

Parallel     implementa- 
tion;    Toroidal   struc- 
ture;    Elitist   strategy; 
Evaluates m  solutions 
simultaneously;      Last 
step is selecting 1 solu- 
tion   from   Pknown and 
optimizing    for     drag 
alone 

Transonic          flow 
wing design 

(2) Drag; Weight Real       values; 
Genes are taper 
ratio,       chord, 
twist        angle, 
and  wing  root 
thickness 

Multi-OBjective 
Evolutionary Algo- 
rithm     (MOBEA) 
(ES) [40, 35] (1999) 

Parallel      implementa- 
tion; Uses preselection 
"window"      in     iden- 
tifying    solutions    for 
mutation and recombi- 
nation 

None (2) & (3) Numeric 
optimization 

Unknown 

A.4-4-4 Pareto Elitist-Based Selection. Elitist selection ensures the best 

(or n best) individuals are retained in the next generation. Pareto elitist-based techniques 

thus first select some number of top Pareto-ranked individuals and the remainder of the 

A-25 



next population is filled via some other method. Thus, these approaches primarily use a 

solution's "elite" (in Pcurrent (<)) status as the selection criteria. Table A.13 lists the known 

Pareto elitist-based selection MOEA approaches. 

Table A.13  Pareto Selection Techniques: Elitist 

Approach Description Application Objectives (#) Chromosome 

Pareto        Optimal 
Genetic           Algo- 
rithm    [207,    206] 
(1993) 

Pareto   optimal   solu- 
tions selected from effi- 
cient set formed by par- 
ents and offspring 

None (2)   Numeric   opti- 
mization 

Binary string 

GENMO    [25,    26] 
(1994) 

Pareto   optimal   solu- 
tions    given    rank    1; 
Dominated  and  infea- 
sible    solutions    given 
Rank 2 and discarded 

Turbomachinery 
airfoil     design     &; 
Ceramic composite 

(2) Torsional nutter 
margin;    Torsional 
resonant amplitude 
&  (2) Cost; Resid- 
ual stress 

Binary string 

GA [348] (1994) Selects   i   "best"   val-' 
ues   in   each  objective 
for    next    population; 
Extinction    eliminates 
identical          individu- 
als;      Immigration    of 
randomly       generated 
solutions 

Bicriteria       linear 
transportation 
problem 

(2) Cost; Deteriora- 
tion 

Integer matrix 

Genetic           Algo- 
rithm    [124,     125] 
(1995) 

Design rule-set evolves; 
Optimizes  the  inverse 
problem to  obtain at- 
tainable    criteria   set; 
Next generation formed 
as per Louis [207] 

Beam            section 
topology 

(2)    Surface    area; 
Moment of inertia 

Binary    string; 
Genes are sets 
of     executable 
rules producing 
a design 

GA [313]a (1995) Retains all  (or subset 
OI) i current 

Unknown Unknown Unknown 

MOGA             [248] 
(1996) 

Integrated               with 
FORMOSA-P         and 
PANTHER;          Gold- 
berg's    [126]    ranking; 
Specialized       EVOPs; 
Active            secondary 
population 

Pressurized    water 
reactor reload core 
design 

(3)    Feed    enrich- 
ment;       Discharge 
burnup;         Radial 
form factor 

Three           2-D 
integer    matri- 
ces;   Genes are 
fuel     assembly 
layouts,    burn- 
able         poison 
loadings,     and 
orientations 

PAReto       optimal 
and   Amalgamated 
induction             for 
DEcision          trees 
(PARADE)     [351] 
(1996) 

Attempts     to     unify 
feature    subset    selec- 
tion,        generalization, 
and pruning methods; 
Discards all non-Pareto 
solutions 

Decision tree induc- 
tion 

(2)      Error     rate; 
Number     of     leaf 
nodes 

S-expression 
representing 
decision tree 

Parallel     Diffusion 
GA [274] (1996) 

Reproduction only with 
immediate    neighbors; 
Elitist Pareto selection 
between offspring and 
one parent 

Solution sensitivity 
analysis 

(2) Solution quality 
change; Number of 
considered parame- 
ters 

Binary    string; 
Genes are prob- 
lem parameters 

GA [311]4 (1996) Discards all dominated 
solutions;        Prohibits 
solution      duplication; 
Population size varies 

Unknown Unknown Unknown 

3Cited by Tamaki [314]; in Japanese. 
4Cited by Tamaki [314]; in Japanese. 
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Table A.13   (continued) 

Approach Description Application Objectives (#) Chromosome 

Pareto      GA      [9] Simulation derives fit- Ballistic      weapon (2)   RMS   position Binary string 
(1996) ness estimation performance error;   RMS   Euler 

angle error 
GA [10] (1996) Retains best  perform- Ballistic      weapon (2)   RMS   position Binary string 

ing solution for each in- design error;   RMS   Euler 
dividual objective each angle error 
generation 

Multiobjective Integrated with  prob- Pressurized       wa- (3)    Feed    enrich- Three              2- 
GA [249] (1998) lem domain code; Spe- ter   reactor  reload ment;       Discharge dimensional 

cialized   EVOPs;    Sec- design burnup;          Power arrays 
ondary population used peaking 

Nondominated No     explicit     fitness; None (2)   Numeric   opti- Real values 
Sorting   GA    [169] Nonlinear     rank     se- mization 
(1998) lection         probability 

assigned   on   basis   of 
Pareto rank and feasi- 
bility;    Uses   crowding 
and specialized EVOPs 

GA [118] (1998) Uses penalty functions; Automotive engine (4)  Fuel consump- Real        values; 
NPGA     [155]     fitness design tion; Following and Genes            are 
sharing;   Elitist   selec- starting  responses; engine parame- 
tion  with   "fife  span"; Acceleration ters 
Fitness       based       on 
distance from Pcurrent 

GA [132] (1998) Specialized       EVOPs; Fuzzy modeling (2) Quadratic mean Binary, integer, 
Uses     three     different error; # of rules and real values; 
population     initializa- Genes are rule 
tion schemes and control set 

values 
GA [246] (1998) Fonseca's   [108]   rank- Aerodynamic wing (2) Lift; Drag Real       values; 

ing   and   fitness   shar- optimization Variables     en- 
ing; Best "N" selection; coded     in     a 
Uses   Taguchi  method tree    structure; 
to   analyze   parameter Genes are wing 
epistasis parameters 

MOGA             [312] Fonseca's [108] MOGA; Transonic wing de- (3)    Drag;     Wing Real values 
(1998) Simulation derived fit- 

ness;   uses elitism and 
"coevolutionary shared 
niching" 

sign weight; Fuel weight 

MOGA             [209] NSGA       [306]       with Two      dimensional (2) Drag coefficient; Real values 
(1998) tournament           selec- 

tion;              Specialized 
EVOPs;   All  solutions 
in    Pcurrent placed    in 
next generation 

airfoil design Backscatter wave 

A.4-5 Hybrid Selection Techniques. Hybrid selection techniques directly utilize 

an MOEA's population capability. Here, succeeding populations are selected using two or 

more cooperative search techniques (which are not necessarily identical for each evaluated 

solution, i.e., multiple strategies may be used each generation).   These techniques are 
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mathematically represented by: 

*    :    P —»■ P' 

P     =     {a,-|Va,-,Oj G Pjfeno«;»} , (A.16) 

where $ is some generation transition function selecting solutions based on their perfor- 

mance using a particular selection technique, and P (i.e., Pknown) is returned to the DM. 

Table A. 14 lists the known hybrid selection MOEA approaches. 

Table A.14  Hybrid Selection Techniques 

Approach Description Application Objectives (#) Chromosome 

Fuzzy                  Re- 
duction              GA 
(FuReGA)       [336] 
(1998) 

Fuzzy   logic-based   se- 
lection decisions; Uses 
elitist, Pareto ranking, 
VEGA, or VEGA vari- 
ant 

Railway timetables (2) Waiting time; 
Investment cost 

Unknown 

GA [357] (1999) Selection via adaptive 
objective       evaluation 
hyperplane     [356]     or 
NSGA [306] 

None (2) Numeric opti- 
mization 

Prüfer  number 
encoding;      In- 
teger         string 
uniquely 
encodes           a 
spanning-tree 

A.5    MOEA Comparisons and Theory 

In addition to proposed MOEA techniques, several MOEA research efforts focus on 

the comparison and theoretical aspects of MOEAs. This section catalogues publications 

classified in these categories. 

A.5.1 MOEA Technique Comparisons. Several citations not only introduce some 

new MOEA technique, but also compare the new approach to an existing one(s). Other 

citations simply apply different MOEAs to some problem and compare/contrast the results. 

Table A. 15 lists the known efforts comparing different MOEA performances. 

Table A.15   Technique Comparisons 

Approach Description Application Objectives (#) Chromosome 

GA      [200,      149] 
(1990, 1989) 

Compares VEGA [289] 
and   Goldberg's   rank- 
ing   [126];    Specialized 
crossover 

Set  covering prob- 
lem   &   Scheduling 
algorithm parame- 
ter search 

(2) Cost;   Violated 
constraints   &    (4) 
Fitness       function 
weights 

Binary string 
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Table A. 15   (continued) 

Approach Description Application Objectives (#) Chromosome 

GA [140] (1992) Weighted    sum    with 
chromosomally         en- 
coded   weights;    Com- 
pares    fitness    sharing 
(applied only to weight- 
ing variables) and two 
VEGA [289] variants 

Static and dynami- 
cally loaded 10-bar 
truss & Wing Box 

(2)           Structural 
weight;        Vertical 
displacement & (2) 
Structural   weight; 
Natural frequencies 

Mix of con- 
tinuous and 
discrete alleles; 
Genes are de- 
sign variables 
and weights 

GA [344] (1993) Compares      weighted- 
sum,  goal attainment, 
Goldberg's             [126] 
Pareto    ranking,    and 
VEGA [289] on identi- 
cal problems 

Digital filter design (2)  RMS  response 
error; Adder cost 

Binary string; 
Genes are 
coefficients 

GA [315] (1994) 2 variants:   Pareto eli- 
tist  and  VEGA  selec- 
tion;   VEGA  selection 
and fitness sharing 

Hot rolling process 
scheduling 

(2) Pressing order; 
Slab assignment 

Binary string 

Multiple  Objective 
GA [272] (1994) 

2    variants:       VEGA; 
Goldberg's [126]  rank- 
ing 

Groundwater    pol- 
lution containmant 
monitoring 

(2)    System    cost; 
System reliability 

Binary string; 
Genes are oper- 
ating mode and 
pumping rate 
of n wells 

Modified      Combi- 
natorial   ES    [182] 
(1995) 

Compares            "Pure" 
Pareto    selection    and 
"Best    per    Objective 
Selection" 

Constrained facility 
layout   (formulated 
as     a     Restricted 
Quadratic   Assign- 
ment Problem) 

(2)  Cost;   Violated 
zoning   constraints 
(only    for    Pareto 
variants) 

Permutation 
ordering; Genes 
are       machine 
locations 

GA [58] (1995) Compares          VEGA, 
Tchebycheff weighting, 
Pareto    ranking,    and 
VEGA-Pareto          GA 
variants 

Groundwater moni- 
toring 

(2)         Undetected 
plumes;    Contami- 
nated area 

Fixed-length 
integer string 

Modified GENESIS 
([135]) [301] (1995) 

Compares   summation, 
Pareto   ranking,    and 
two fuzzy logic ranking 
techniques;   MOP   also 
varies in complexity 

Flat  aircraft panel 
design 

(5)   Weight;   Man- 
hours;         Number 
of    stiffeners    and 
frames;            Panel 
buckling;           Bay 
buckling 

Implies binary 
string 

Multiple  Objective 
GA [297] (1996) 

Compares       Fonseca's 
MOGA   [108]   to   sep- 
arate        weighted-sum 
runs 

Meal       production 
line scheduling 

(3)               Rejected 
orders; Batch late- 
ness;        Shift/staff 
balancing 

Permutation 
ordering 

Multiobjective 
GA [73] (1996) 

Compares                 lin- 
ear             combination, 
"two-branch-"          and 
Pareto        domination- 
tournament 

Rotor   system   de- 
sign 

(2)   Rotor   system 
power;   Rotor  sys- 
tem weight 

Binary string 

GA [314] (1996) 4 variants:  Parallel se- 
lection;    Pareto   rank- 
ing;    Tournament   se- 
lection   with    sharing; 
Pareto reservation 

None (2)   Numeric  opti- 
mization 

Binary string 

GA [298] (1996) Compares       weighted- 
sum,     MOGA     [114], 
and parallel migration 
results 

Production 
scheduling 

(3)   Job   omission; 
Order        lateness; 
Staff shift lengths 

Unknown 

MOGAC             [90] 
(1997) 

Fonseca's   [111]   rank- 
ing; Implements inverse 
elitism   and    dynamic 
parameter adaptation 

Hardware/software 
co-design 

(2)    Cost;     Power 
consumption 

Unknown 
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Table A.15   (continued) 

Approach                |  Description                   | Application             |  Objectives (#)      |  Chromosome   | 

GA [263] (1997) Hybridized with conju- 
gate gradient-based lo- 
cal  search;    Compares 
simple, three hybridiza- 
tion, and weighted sum 
approaches 

Airfoil design (2)  Drag;  Pitching 
moment 

Real values; 18 
design variables 

Fuzzy   Logic-based 
Multiobjective 
GA [267] (1997) 

Compares fuzzy logic- 
based   fitness    assign- 
ment and NPGA [155] 
results 

None (2)   Numeric  opti- 
mization 

Binary string 

Fuzzy   Logic-based 
Multiobjective 
GA [268] (1997) 

Compares fuzzy logic- 
based   fitness    assign- 
ment and NPGA [155] 
results 

Born-Mayer   prob- 
lem 

(2)   &   (4)   &   (9) 
Sample      function 
values (all) 

Binary    string; 
Genes           are 
model parame- 
ters 

GA [31, 29] (1997) Compares six weighted- 
sum ranking methods 

None (2)   Numeric   opti- 
mization 

Binary string 

GA [91] (1998) Compares        weighted 
sum, Goldberg's rank- 
ing [126], and Fonseca's 
MOGA  [108];   Special- 
ized EVOPs 

"Cell"      configura- 
tion     (constrained 
facility layout) 

(2) Yearly process- 
ing; Overall Cost 

Integer   string; 
Genes         rep- 
resent           the 
number of "re- 
actors"   in   the 
corresponding 
cell 

MOGA   [241,   239] 
(1998) 

Compares niching and 
elitist    models;     Inte- 
grates problem domain 
codes 

Transonic wing de- 
sign 

(3)      Aerodynamic 
drag; Wing weight; 
Fuel   tank   volume 
or aspect structure 

Real             val- 
ues;          Genes 
are           polar- 
coordinate   x-y 
pairs 

GA [78, 79] (1998) Compares Pareto rank- 
ing,           lexicographic, 
linear         combination, 
VEGA,      and     Four- 
man's [117] techniques 

Computer       aided 
project study 

(1-9)      Take      off 
distance;    Landing 
speed;      2    excess 
power        measure- 
ments;       4     turn 
rates; Ferry range 

Real values 

MOGA   [359,   358] 
(1998) 

Compares         random, 
weighted sum, NPGA, 
NSGA,     and    VEGA 
MOEAs 

None (2,3,4)      Combina- 
torial optimization 
example            (0/1 
knapsack problem) 

Binary    string; 
Genes are items 
present   in   ith 
knapsack 

GA [50] (1998) Compares    results    of 
GAs, tabu search, and 
simulated annealing 

Cardinality       con- 
strained     portfolio 
optimization 

(2) Return; Risk Appears to be 
real values 

GA [60] (1998) Compares        weighted 
min-max; random, and 
several MOEA results 

Machine tool spin- 
dle 

(2) Volume; Static 
displacement 

Real values 

GA [318] (1998) Compares               Fon- 
seca's [108]  and Gold- 
berg's      [126]      Pareto 
ranking,       and      also 
tournament    selection; 
Population has  multi- 
ple,    non-interbreeding 
species;   Uses   penalty 
function 

Full   stern  subma- 
rine design 

(2) Volume; Power Binary string 

GA [63, 64, 66, 67] 
(1998, 1999) 

Compares        weighted 
min-max; random, and 
several MOEA results 

I-beam    design    & 
Machining parame- 
ters 

(2)     Cross-section; 
Static deflection &; 
Surface  roughness; 
Surface     integrity; 
Tool    life;     Metal 
removal rate 

Real values 
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Table A.15   (continued) 

Approach Description Application Objectives (#) Chromosome 

GA [1] (1998) Compares distance, av- 
erage, and Pareto rank- 
ings 

Self-organizing 
fuzzy    logic    con- 
troller       rule-base 
optimization 

(2) Absolute error 
integral; Controller 
effort integral 

Binary string; 
Genes are rule 
parameters 

GA [208] (1998) Compares Pareto and 
fuzzy logic-based rank- 
ings 

Muscle        relaxant 
anesthesia model 

(2) Absolute error 
and control effort 
integral; Time 
absolute error 
and control effort 
integral 

Binary string; 
Genes are rules 

A. 5.2 MOE A Theory and Reviews. Many of the preceding cited efforts at least 

pay "lip service" to different facets of underlying MOEA theory, but make no significant 

contribution when simply citing relevant issues raised by others. However, some (e.g., 

Fonseca [114] and Horn [154]) go into significant theoretical detail. Their work provides 

basic MOEA models and theories which are addressed in Section 3.3.2. Other recent 

papers also focus on MOEA theory and use application examples to illustrate key concepts. 

Finally, four major MOEA reviews exist [111, 152, 326, 61]. Table A.16 lists the known 

efforts discussing MOEA theory in some detail. 

Table A.16  MOEA Theory 

Researcher (s) Paper Focus 

Fonseca and Fleming [109] (1995) MOEA selection, sharing, and mating parameter val- 
ues 

Fonseca and Fleming [111] (1995) MOEA review and general Pareto concepts 
Fonseca and Fleming [114] (1998) MOEA parameters and values; Goal incorporation 
Horn and Nafpliotis [154] (1995) MOEA sharing and niching values 
Fonseca and Fleming [107] (1997) MOEA mathematical formulations 
Horn [152] (1997) MOEA-Pareto observations and review 
Rudolph [276] (1998) MOEA convergence 
Van Veldhuizen and Lamont 325] (1998) MOEA convergence and Pareto terminology 
Van Veldhuizen and Lamont 326] (1998) MOEA components, Pareto characteristics, and test 

problems 
Deb [83] (1998) Constructing bi-objective MOEA test problems 
Coello [61] (1999) MOEA technique review 
Van Veldhuizen and Lamont [327] (1999) MOEA benchmark test problems 
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Appendix B.   MOPs in the Literature 

This section contains the tables classifying and cataloging all known (to date) MOEA test 

functions1. As previously discussed, together they form a de facto MOEA test function 

suite. 

Table B.l  MOP Numeric Test Functions 

Researcher &c 
Major    MOP 
Characteris- 
tics 

Definition Constraints 

Binh 
(1)     [36,     38]; 
Ptrue con- 
nected, 
PFtrue convex 

F = (fi(x,y),f2(x,y)), where 

h{x,y)    -   x2+y2, 

h(x,y)     =     (x - 5)2 + (y - 5)2 

-5 < x,y < 10 

Binh (3) [35]; F = {h(x,y), f2{x,y), f3{x,y)), where 

h{x,y)     =     x-W\ 

h{x,y)    =    i/-2*10-6, 

h{x,y)     =     xy-2 

10-b < x,y < 10b 

Fonseca [111]; 
Ptrue con- 
nected, 
PFtrue concave 

F = {h(x,y),h{x,y)), where 

h(x,y)     =     l-exp(-(*-l)2-G/ + l)2), 

h(x,y)     =     l-exp(-(:r-|-l)2-(3/-l)2) 

None 

Fonseca 
(2)            [109]; 
Ptrue con- 
nected, 
PFtrue concave, 
Analytical 
solution stated 

F = (h(x),f2(x)), where 

h{x)     =    l-exp(-^-^)2), 

n                  j 

h(x)     =     l-exp(-J2(xi + -j=)2) 

-4 < xi < 4 

Kursawe2 [189]; 
Ptrue dis- 
connected, 
PFtrue discon- 
nected 

F = {h{x),h{x)), where None 

t=i 

1=1 

1Because several distinct MOPs may be created using Deb's initial methodology [83], direct implemen- 
tations of those functions are not listed here. 

2 Marco Laumanns indicates this MOP was misprinted in Kursawe's original paper (personal 
correspondence). 
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Table B.l   (continued) 

Researcher &c 
Major    MOP 
Characteris- 
tics 

Definition Constraints 

Lau- 
maiins     [195]; 
Ptrue dis- 
connected, 
PFtrue convex 

F = (h(x,y),h(x,y)), where 

h {x, y)    =   x2 + y2, 

f2(x,y)     =     (x + 2)2 + y2 

-50 < x,y < 50 

Lis            [201]; 
Ptrue dis- 
connected, 
PFtrue discon- 
nected         and 
concave 

F= (h{x,y),f2(x,y)), where -5 < x,y < 10 

h (x, y)    =    Vx2 + y2, 

h(x,y)     =      y/(x - 0.5)2 + (j/ _ o.5)2 

Murataa [230]; 
Ptrue con- 
nected, 
PFtrue concave 

F = (h(x<v)<h(x,y)), where 

h (x, y)    =    2Vx, 

h{x,y)     =     x(l-y) + 5 

l<a;<4, l<2/<2 

Poloni4    [257]; 
Ptrue dis- 
connected, 
PFtrue discon- 
nected          and 
convex 

Maximize F — (fi(x,y), f2(x, y)), where 

h{x,y)    =    -[1 + (A1-B1)
2 + (A2-B2f], 

h(x,y)     =     -[(x + 3)2 + (y + l)2] 

— 7T <  X, y < TT, 

Ai     =     0.5sinl - 2cosl + 

sin2 — 1.5cos2, 

A2     =     1.5 sin 1 — cos 1 + 

2 sin2- 0.5 cos 2, 

B\     =     0.5 sin x — 2 cos x + 

sin j/ — 1.5 cos y, 

B2     =     1.5 sin a; — cos x + 

2 sin y — 0.5 cos y, 

Quaglia- 
rella         [262]; 
Ptrue dis- 
connected, 
PFtrue convex 

F = (fl(x),f2(x)), where 

fl(x)     =     \   , 
V   n 

M    =   f>02- 
t=i 

10cos[27r(a;i)]-l-10], 

M     =     f><-1.5)2- 
t=l 

10cos[27r(a;; - 1.5)] 

+10], 

-5.12 < Xi < 5.12,n = 16 

3Tamaki [315] gives an almost identical function. 
4The MOP appears to be mistyped in the cited paper; A later paper [258] also mistypes the function; 

it then modifies the original function by requiring: Xi, y, £ [-T/4, 7r/4], X = £)i=i xt, y = J2i=i Vi- 
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Table B.l   (continued) 

Researcher & 
Major    MOP 
Characteris- 
tics 

Definition Constraints 

Rendon  [324]; 
Ptrue con- 
nected, 
PFtrue convex 

F = (h{x,y),h(x,y)), where 

h(xv)     ~               1 

—3 < x,y < 3 

h(x,y)     -     x2+y2 + v 

f2(x,y)     =    x2+3y2+l 

Rendon 
(2)              [324]; 
Ptrue con- 
nected, 
PFtrue convex 

F = (h(x,y),h(x,y)), where 

h(x,y)     =     x + y+1, 

h{x,y)     =    x2 + 2y-\ 

-3 < x,y < 3 

Schaffer5 [289]; 
Ptrue con- 
nected, 
PFtrue convex, 
Analyti- 
cal        solution 
proved [276] 

F = (h(x),f2{x)), where 

/l(a:)     =     x2, 

h(x)     =     {x-2)2 

None 

Schaffer 
(2)    [306,    31]; 
Ptrue dis- 
connected, 
PFtrue discon- 
nected 

F = (fi(x),f2(x)), where 

fl(x)     =     —x,   if a; < 1, 

=     -2 + x,   if 1 < x < 3, 

=     4 - a;,   if 3 < x < 4, 

=     —4 + x,   if x > 4, 

f2(x)     =     (x-5)2 

-5 <x< 10 

Vicini"    [331]; 
Ptrue con- 
nected, 
PFtrue convex 

F = (h(x,y),f2(x,y)), where 

Mx,y) = -(f:W*-^+
2
0/-?/')2]) 

1 = 1                                                                    * 

+3, 

t i      ^                /V~> v        r(x-xi)2 + (y- yi)2 

h{x,y)    =      (2^#.-exp[             ^2             ]) 

+3 

0<Hi<l, 

-10 < x,Xi,y,yi < 10, 

1.5 < (Tj < 2.5 

Viennet [334]; 
Ptrue connected 
and symmetric, 
PFtrue curved 
surface 

F = (h{x,y),h(x,y),h{x,y)), where 

h(x,y)     =    a:2 + (y-l)2, 

f2(x,y)     =     x2 + (y + l)2 + l, 

fs(x,y)     =     (x - l)2 + y2 + 2 

-2 < x,y < 2 

5 Jones et al. [170] and Norris [237] give almost identical functions; their modifications are intended to 
ease analysis. 

6 A three decision variable equation of the same form is also presented. 

B-3 



Table B.l   (continued) 

Researcher & 
Major    MOP 
Characteris- 
tics 

Definition Constraints 

Viennet 
(2) [334]; 
Ptrue connect- 
ed,   PFtrue dis- 
connected 

F= {}i(x,y), h{x,y), h(x,y)), where 

(« - 2)2 , (y + l)2 

h {x, y) ■+■ 
13 

+ 3, 

—4 < x,y < 4 

//,.,/» - (^ + 2/-3)2       (-* + j/ + 2)2 

/a(*,!/) -  ^ +  g 17, 

A(„y) = (x + 2y-iy       (Jy-^_l3 
Ji\ >y/ 175 17 

Viennet 
(3) [334]; 
-Ptrue discon- 
nected and 
unsymmetric, 
PFtrue con- 
nected 

ir = (/i(i,j),/jKv),/3(ii!l)), where 

h (x, y) 

h{x,y) 

-3<x,y<3 

0.5 * (x2 + y2) + sin(i2 + J/2), 

(3g - 2y + 4)2   ,   (g - y + l)2   ,  , g 
 7, 1 ^ r 15> 27 

h{x,y)     = 
(12+j/2+l) 

- l.le' :(-*
2-S/2) 

Table B.2  MOP Numeric Test Functions (with side constraints) 

Researcher &: 
Major    MOP 
Characteris- 
tics 

Definition Constraints 

Belegundu[25]; 
Ptrue connected, 
PFtrue con- 
nected 

F = (h(x,y),f2(x,y)), where 

h(x,y)     =     -2x + y, 

}2{x,y)     =     2x + y 

0<x<5, 0<y<3, 

0     >     -x + y-1, 

0     >     x+y-7 

Binh   (2)  [37]; 
Ptrue connected, 
PFtrue convex 

F = {S\{x,y),h{x,y)), where 

h (x, y)    =    4x2 + 4j/2, 

h(x,y)     =     (x - 5)2 + (y - 5)2 

0<x<5, 0<y<3, 

0     >     (x - 5)2 + y2 - 25, 

0     >     -(a; - 8)2 - 

(y + 3)2 + 7.7 

Binh (4) [39]; F= (h(x,y), h(x,y), h(x,y)), where 

h{x,y)     =     \.h-x{\-y), 

h(x,y)     =     2.25-x(l-y2), 

f3(x,y)     =     2.625-^(1-jy3) 

-10 < x,y < 10, 

0     >     -x2 - (y - 0.5)2 + 9, 

0     >     (x - l)2 + 

(y - 0.5)2 - 6.25 
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Table B.2   (continued) 

Researcher & 
Major    MOP 
Characteris- 
tics 

Definition Constraints 

Jimenez [169]; 
Ptrue connected 
and symmetric, 
PFtrue convex 

Maximize F = (h(x,y), f2(x,y)), where 

h(x,y)     =     5x + 3y, 

f2(x,y)     =     2x + 8y 

x,y >0, 

0     >     x + 4y - 100, 

0     >     3x + 2y- 150, 

0     >     200 - 5x - 3y, 

0     >     75 - 2x - 8y 

Kita         [181]; 
Ptrue dis- 
connected, 
PFtrue discon- 
nected          and 
concave 

Maximize F = {fi(x,y), f2(x, y)), where 

h(x,y)     =     -x2+y, 

h(x,y)     =     -a;+ 27 + 1 

x,y > 0, 

1                 13 
0     >     -x + y , 

- 6                 2 
1                15 

0     >      -x + y , 
- 2        "       2 ' 

0     >     5x + y - 30 

Obayashi[238]; 
Ptrue connected 
and symmetric, 
PFtrue convex 

Maximize F = (h(x,y), f2(x,y)), where 

h(x,y)     =    x, 

h (x, y)    =    y 

0<x,y< 1, 

x2 + y2 < 1 

Osyczka [245]; 
Ptrue dis- 
connected, 
PFtrue convex 

F = (h(m,y),f2{x,y)), where 

Si (x, y)     =     x + y2, 

S2{x,y)     =    x2 + y 

2 < x < 7, 5 < y < 10, 

0     <     12-x-y, 

0     <     x2 + Wx - 

y2 + 162/ - 80 

Osyczka 
(2)             [245]; 
Ptrue dis- 
connected, 
PFtrue discon- 
nected 

F = (/i(#),/2(£)), where 

Si{x)     =     -{25(x1-2f + {x2-2)2 + (x3-\f 

+ (xi-4)2 + {x&-\f, 

f2(x)     =     x\ + x\ + x\+x\+x\+x\ 

0 < x\, X2, xe < 10, 
1 < x3,x& < 5, 
0 < x± < 6, 

0     <     a?! + a:2 - 2, 

0     <     6 — x\ — X2, 

0     <     2 — X2 + xi, 

0     <     2-xi+3x2, 

0     <     4 - (a;3 - 3)2 - a;4, 
0     <     (x&- 3)2 + 16-4 

Srinivas' [306]; 
Ptrue dis- 
connected, 
PFtrue con- 
nected 

F = (fi(x,y),S2(x,y)), where 

Si(x,y)     =     (x-2)2 + (y-l)2 + 2, 

f2(x,y)     =     9x-(y-l)2 

-20 < x,y < 20, 

0     >     x2 + y2 - 225, 

0     >     x - 3y + 10 

7 Deb uses this function with no side constraints as an example in another paper [87]. 
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Table B.2   (continued) 

Researcher &: 
Major    MOP 
Characteris- 
tics 

Definition Constraints 

Tamaki   [314]; 
Ptrue connected, 
a   curved   sur- 
face,     PFtrue a 
curved surface 

Maximize   F    =    (fi(x,y, z), h(x,V, *), h(x,y, z)), 
where 

fl{x,y,z)     =     x, 

h(x,y,z)    =    V, 

h(x,y,z)    =    z 

0< S,3/,Z, 

x2+y2 +z2 <1 

Tanaka   [316]; 
Ptrue connected, 
PFtrue discon- 
nected          and 
convoluted 

Minimize F = (fi{x,y), f2{x, y)), where 

h(x,y)    =    x, 

h(x,y)    =    y 

0 < x,y <ir, 

0    >    -(a;2)-(2/2) + l + 
x 

0.1 * cos(16 arctan—) 

i   >   (.-i)a + (»-i)9 

Viennet 
(4)              [334]; 
Ptrue connected 
and unsymmet- 
ric,        PFtrue a 
curved surface 

F = (fi{x,y), f2(x,y), h(x,y)), where 

f(r,A        (*-2)2 . (v + i)2 . „ 
h(x,y)    =                             13            ' 

ri,  ,\           (^ + 3/-3)2     (2y-xf 
h{x,y)   -         175       I      17        13, 

f(r ,.x             (3x-2y + 4)2      (s-y + 1)2 

J3 (*.?/)     -                           - ■+           27           +15 

—4<x,y<4, 

y     <     -4a; + 4, 

x     >     -1, 

2/     >     z-2 
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Appendix C.   Ptne  & PFir%e for Selected Numeric MOPs 

The following figures present both Ptr%e and PFtrue for each listed function in Table B.l. We 

stress that these figures are deterministically derived; Pareto representations may change 

when computational resolution is increased/decreased. 

Blntn Pareto Optimal Solutions 
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BlnM Pareto Front 

Figure C.l.     Binh Pareto Optimal 
Set 

Figure C.2.     Binh Pareto Front 
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Figure C.3.     Binh (3) Pareto Op- 
timal Set 

Figure C.4.     Binh (3) Pareto Front 
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Fonseca Pareto Optimal Solutions 
Fonseca Pareto Front 
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Figure C.5.     Fonseca Pareto Opti- 
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Figure C.6.     Fonseca Pareto Front 
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Figure C.7.     Fonseca   (2)   Pareto 
Optimal Set 

Figure C.8.      Fonseca   (2)   Pareto 
Front 
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Laumanns Pare» Optimal Solutions Laumanns Pareto Front 

Figure C.ll.     Laumanns     Pareto 
Optimal Set 

Figure C.12.     Laumanns      Pareto 
Front 
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Figure C.15.     Murata Pareto Op- 
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Front 
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polonl Pareto Optimal Solutions 

1   ::J 

Polonl Pareto Front 

'••.asS«sJ 

Figure C.17.     Poloni Pareto Opti- 
mal Set 

Figure C.18.     Poloni Pareto Front 
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Optimal Set (for 
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Figure C.20. Quagliarella Pareto 
Front (for n = 3) 
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Figure C.21.     Rendon Pareto Op- 
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Rendon (2) Pareto Optimal Solutions 
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Figure C.23.     Rendon   (2)  Pareto 
Optimal Set 

Figure C.24.     Rendon  (2)  Pareto 
Front 
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Figure C.25.      Schaffer Pareto Op- 
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Front 
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Optimal Set 

Figure C.28.     Schaffer (2) Pareto 
Front 
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Viclnl Pareio Optimal Solutions 
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Figure C.29.     Vicini Pareto Opti- 
mal Set 

Figure C.30.     Vicini Pareto Front 
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Figure C.31.     Viennet Pareto Op- 
timal Set 

Figure C.32.     Viennet Pareto 
Front 
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Figure C.33.     Viennet  (2)  Pareto 
Optimal Set 

Figure C.34.     Viennet  (2) Pareto 
Front 
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Vlennet (3) Pareto Optimal Solutions 
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Figure C.35.     Viennet  (3)  Pareto 
Optimal Set 

Figure C.36. Viennet  (3) Pareto 
Front 
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Appendix D.   Ptrv,e  & PFir%e for Selected Numeric (Side-Constrained) MOPs 

The following figures present both Ptrue and PFtr%t for each listed function in Table B.2. We 

stress that these figures are deterministically derived; Pareto representations may change 

when computational resolution is increased/decreased. 
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